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A Modelling policy shocks and shocks to the rule

A.1 Nonlinear and linear policy rules

Let us consider a generic nonlinear Taylor rule, following Woodford (2003):

11,
Ri—o (H—) | (1)

where R; is the gross nominal interest rate, and the function ¢ indicates the rule used by the
central bank to set its policy rate. ¢(-;14) is a bounded-below, non-decreasing function for
each possible value of the shifter v, while II, = P,/P,_; is the gross inflation rate and II}
is a, possibly, time-varying target rate.! v, captures shifts in the central bank’s rule — i.e.
variations in policy, or in its implementation —, distinct from changes in the inflation target

itself.

A.1.1 A standard linearisation

The standard log-linearisation of Eq. (1) is obtained by first defining r; = log Ry, m; = log 1,
and 77 = logII}, and then considering a first-order Taylor expansion of Eq. (1) at the point
(I, =11} = 1;14 = 0). This corresponds to a Taylor expansion around a zero-inflation steady
state.

We can then write
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n general, ¢(-,-) is a function capturing the nonlinear behaviour of the policy away from the steady
state where a small perturbation approximation is not accurate, or around the zero or effective lower bound
where its non-negative (or bounded-below) nature is visible.



and by employing the definitions above, we get
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We can now proceed with a standard expansion to the first-order to obtain
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and by defining the following parameters
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we obtain the standard linear Taylor rule
re=1"+ ¢(m — 7)) + ompr T + O(2). (2)

A few key observations are worth noting. First, v, which captures shifts in the central
bank’s rule — i.e. the central bank becoming more hawkish or more dovish — in the standard
approach is the source of monetary policy shocks. Second a shock to the target, depending
on whether it is permanent or temporary, would either affect r*, or manifest as a monetary
policy shock. To obtain a Taylor rule with a time-varying response parameter to inflation, we

need to take a slightly different expansion.



A.1.2 A linearised Taylor rule with a time varying parameter

Let us now consider a first-order log-linear approximation at a different value of the policy

shifter, i.e. v, = 1. In particular, we want to consider this parameter as

— m
vy =+ v,

where 7; is persistent component — similar to a random walk, to fix ideas —, while ;" is a
transitory component.

As was done before, let us define r; = log Ry, m = logIl;, and 7} = log I}, but now we
take a first-order Taylor expansion of Eq. (1) with respect to the point (II; = II}; 1, = 7). In
doing so we assume that v; is stable around the possibly time-varying steady state 7;, which
captures persistent changes to the rule over time.?

Following similar steps to those taken before
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and defining the following time-varying quantities
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2This expansion necessarily assumes that the exogenous variables v; and II; remain for a long time within
the neighbourhood of what can be thought of as their steady-state values.
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we obtain a Taylor rule, with time-varying coefficients, i.e.?
re =17+ ¢u(m — ) + 0"y + O0(2), (3)

where r; can be thought of as the nominal equilibrium rate, and ¢, is the elasticity of the
policy rule with respect to deviations of inflation from the target.*

Let us make three related remarks. First, the time variations in the coefficients of the
Taylor rule depends on the potential time variation due to v;, which potentially affects all
the parameters, and that has been modelled as the sum of a persistent and a non-persistent
component, i.e. v; = ;+1,"". Second, for the log-linear expansion to be valid it has to be that
the rule is relatively stable and the changes are not ‘too large’ otherwise the linear expansion
around the time-varying steady state could be not valid and second order terms could be
as large as or larger than first-order terms.® Third, and as a consequence, the time-varying
nature of the coefficient needs a specification of the law of motion to assess the expansion
since all terms with time-varying coefficients are potentially containing sums of first and
second order terms.

We need now to focus on the role of 7; which we have been thinking of as the persistent
part of the parameter characterising variations in policy or its implementation. Given the

relative stability of the US monetary policy, we can think of it as a stochastic parameter

3The time-variation that has been captured through v, does not need to occur simultaneously in all the
parameters of the Taylor rule and will depend on the nature of ¢ and the dimension of v.
4The equation can be rewritten as
re =Tt + ¢y + O(2),

where 7 = r} — ¢y} + 07 P1;"? is a measure of the total exogenous shift in the central bank’s reaction function.

5The inclusion of the random disturbances gives a log-linear (first-order Taylor series) approximation to
that solution, accurate up to a residual of order O([|£]|?) where ||£|| indexes the bounds on a given disturbance
process £.



evolving as a bounded random walk (see, for example, Nicolau, 2002).5 This assumption is in
line with the intuition of a drift in the Taylor parameter, proposed by Bauer and Swanson
(2023a,b).

This observation allows us to consider a further expansion in 1, around what we can think
of the central point of the bounded random walk. If the area in which the process behaves
like a random walk is not ‘too large’, then a Taylor expansion can provide an approximation
to the policy rule. Let us focus on the inflation parameter of the Taylor rule and consider an

expansion at the centre of the bounded area of the bounded random walk process, v, i.e.
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The expansion shows that we are now considering second-order terms, going beyond a first-
order expansion. A similar expansion can be considered for the other time-varying parameters
of the Taylor rule in Eq. (3). However, for the sake of the exposition, let us focus on the ¢
parameter only.

Following the described steps, we obtain:
re=1"+ (6 + o) (T — ) + T + O(2), (8)

where O(2) now represents the remainder term which still contains second order terms, i.e.

6A possible way to write a bounded random walk process is the following, proposed by Nicolau (2002)

Dy = Dp_q + €~ (675(17,571717) _ eﬂ(waﬁ)) + o.ey, (4)

for 6 > 0, 8 > 0, kK > 0 where {g;} is a sequence of independent and identically distributed (i.i.d.) random
variables with E[e;] = 0 and Var[e;] = 1. The parameters &, d, and S are selected so that when 4 is close to
v it behaves as a random walk, while when it moves significantly away from it, it will be reversion effects
that pull it toward 7 again. A bounded random walk can be indistinguishable from a random walk, although
stochastically bounded by an upper and lower finite limit.
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, (my — 77)?, and (7 — 77)v, ", albeit the expansion now features some terms beyond
the first order, i.e. ¢ (m — 7).

Let us recap. Starting from a general nonlinear policy rule we derived a linearised Taylor
with an inflation coefficient varying through time and with a shift behaving like a random walk,
but effectively covering a bounded space (and hence being a stationary and ergodic process).
It is important to stress that in doing so we have to consider second order terms beyond the
standard first-order log-linearisation of the Taylor expansion. Other second-order terms, of
the same magnitude, may have been dropped in the expansion. From the point of view of the

agents in the model, the random walk nature of the process driving the time-change in the

rule parameters implies the need to forecast using the parameters from the last period.

A.2 A simple term structure model

Let us now consider, following Ellingsen and Soderstrom (2001), a simple affine term structure
model of the type discussed in Svensson (1997, 1999), and based on the expectation hypothesis
that does not model term premium.”

The economy is described by a set of linear equations

Ty = M1 + Y1 + OrUy, 9)
Y = Byt—l — 0(r4—1 — Era[m]) + oyui, (10)
Ty = @'EO) = (¢ + Q) + (W + W)y + Tmply (11)
1 n—1
i = n Z Eyfrii] + &7, (12)
i=0
v = (13)

where all the variables are considered in deviation from their steady state. The model features

an accelerationist Phillips curve in which the change in the inflation rate is positively related

"We refer to Ellingsen and Soderstrom (2001) for a discussion of some of the standard results reported in
this section.



to the previous period’s output gap (Eq. 9), with ¢ > 0, and u] representing an i.i.d. supply
shock with mean zero. The output gap is mean reverting and negatively related to the ex ante

real short interest rate (Eq. 10). By substituting expectations of Eq. (9) in Eq. (10), one gets
Yt = BYr1 — 6(re1 — m1) + oy, (14)

for = B + dt. The short term interest rate is set according to a Taylor rule that responds to
inflation and output gap (Eq. 16), and possibly with time-varying parameters as discussed in
the previous section. The yield curve is specified as following the expectation hypothesis, and
the n-periods ahead interest rate given by the expected path of the short term interest rate
plus an exogenous term premium, fén) (Eq. 12). Finally, the monetary policy disturbance,

v, follows an autoregressive process of order one (Eq. 13).

A.2.1 The central bank’s problem

As discussed in Ellingsen and Soderstrom (2001), the policy equation can be obtained from

the problem of a central bank trying to minimise a loss function

L =FE, Z 1925 (7Tt2+s + Atth—&-s) ) (15)
=0

where the parameter \; is the weight of output stabilisation relative to inflation stabilisation,
which in our setting may change over time. The solution of this programme for the central

bank delivers a linear policy rule

re = O + WY + Oply (16)
with coefficients
Lk 15

for £ > 1 a constant.



How do the parameters change for a change to \;? Let us consider a first order expansion

at a given value of A, and define

_0¢ 10k

¢t: 8_)\,5()\t_/\) = _5(/\t+b219k3)2<)\t_/\) (18>
_ Ow 09 _ Uk —
Wy = a—)\t()\t —A) = Lﬁ’_)\to\t —A) = _LQ(;()\t + 20k)? (A —=A) (19)

If we assume that \; evolves in a neighbourhood of A as a bounded random walk, then ¢; and

wy inherit the bounded random walk dynamics

b1 = P11 + opuy, (20)

Wy = wy_1 + La¢uf. (21)

In the following discussion of this model, we will focus on the solution of the model for
¢: = w; = 0 and consider how a shift to the policy rule parameters, as well as different shocks

affect the yield curve.

A.2.2 The yield curve in the economy

To find a solution for the yield curve, we can start by taking expectations of the policy rate,

in Eq. (12), ¢ periods ahead:

Eyrey] = 0B ] + WE Y] + omp B[V )] (22)
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By employing Eq. (9), (16) and (14), we obtain:
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where, in the second line, we observe that

Ev/5) = CElvfi ) = . = (v (25)

The condition

1 —u(p—1)] <1,

is needed to get a finite sum in the above summations.

We can now substitute Eq. (24) into Eq. (23) to obtain
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By substituting Eq. (24) and Eq. (26) in Eq. (22), we obtain the following expression
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We can now observe that:
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Hence, from the term structure in Eq. (12), we obtain an analytical solution for bonds at

12



different maturities, i.e.
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The yield curve can be written in the standard form of an affine model as

i = a + 05 + By + ey + (31)
with a,, = 0 and
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A.2.3 The impact of a policy parameter shift

The yield change triggered by the monetary policy announcement, conditional on a shock to

the policy parameters, uf , can be written as

o 0™ ¢ 9il™
A[E—zﬂg): ‘ L= opotuf

35
by du? ¢ ofon ! (35)

where A_y indicates the difference between the yields before and after the announcement.

To compute the changes of the yields triggered by a change in the time-varying part of the

13



policy parameter, we can consider the model with constant ¢ and take a derivative in that
parameter.
To compute the derivative of the rates with respect to a change in the parameter of the
oi{™

Taylor rule ¢, i.e. 25 let us consider Eq. (30) and set the monetary policy shock to zero.

At n = 1, the policy rate responds as

ai"
99

= Tt + Lyta

and hence the impact is positive and equal to one. For n > 2, we need a bit more work, let

us focus on the coefficient in front of m 4 wy;, which we can rewrite as
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where we define
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Using the standard derivation rules
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and the fact that g—z = 1. As observed above, the derivative of the term ¢m; 4+ wy, in ¢ is

equal to m; + ty;. The derivative of the rates at different maturities is therefore

g 1 1
5 = - {1 + m {(1 —16(¢p — 1) — wd) T (o)

FIO) 0~ 1) (1~ 1o — 1)) o3 - THOTE)

¢_11}m+wg(w)

For n large, since (1 —td(¢ — 1)) < 1, we get Ty ~ 1,

Ti(9)(n —1) (1= ed(¢ —1))" " ~ 0,

and
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Thus, conditional on positive values of inflation and output at time ¢, a shift in ¢ causes
short maturities to rise and longer maturities to decrease. This results and the following

proposition are similar to what derived by Ellingsen and Soderstrom (2001).

Lemma 1 (Shock to the parameters of the policy rule). If a policy decision of the
central bank reveals a change in the preferences of the central bank, interest rates on bonds
of sufficiently long maturity move in the opposite direction to the unexpected change in the
policy rate, i.e. an unexpectedly high central-bank rate tilts the yield curve clockwise, while an

unezxpectedly low rate tilts it counterclockwise.
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A.2.4 The impact of information

Following Ellingsen and Soderstrom (2001), let us consider a situation in which agents are
not perfectly informed and the effect of information conveyed by a policy action, i.e. agents
learning about a demand and/or a supply shock via the central bank’s decision. The yield
change triggered by information about the shocks can be written as

my 00"

. il
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t

y “t
ouy

s
uy +

(n

Differentiating i, ) in Eq. (30) with respect to u], one obtains

0" ox [ lp—wd(e—1][1-(1—w(¢—1)""]
&@_"F{¢+ 16(¢ — 1) ’ 2

while taking a derivative in the demand shock, u}, one finds
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ou! n

Since ¢ > 1, and (1 —wd(¢ — 1)) < 1, we can conclude that an information shock would lift

all the maturities with the magnitude of the effects decreasing with n=!.

Lemma 2 (Information effects). If a policy decision of the central bank transmits infor-
mation about either a supply or a demand shock, market interest rates will comove with the
policy rate change at all maturities, with the magnitude of the effects decreasing over the

maturities at rate n= .

A.2.5 The impact of monetary policy shock

The effect of a monetary policy shock on the yield curve can be written as

<(n)
Dy
aymput ’
t
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where the impact of a monetary policy disturbance is given by
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On the policy rate, the effect of the shock is positive and equal to o), i.e.

i
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For n large, since 1 —16(¢p — 1) < 1 and |(] < 1, the leading terms are
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which is always negative since ¢ > 1, and goes to zero for n large.

To summarise: (i) the response to a monetary policy shock in this model goes to zero
with n~1, (ii) the impact of a positive monetary policy shock is positive at short maturities to

become negative at long maturities.

Lemma 3 (Monetary policy shock). Following a monetary policy shock the interest rates
on bonds of sufficiently long maturity will move in the opposite direction to the monetary
policy shock and the movement of the short maturities. The magnitude of the effects declines

with the maturity of the bond, at rate n™1.

A.2.6 A discussion on the magnitude of the effects at the end of the curve

As we have seen the effects for both a monetary policy shock and a change to the rule,
conditionally on a demand or supply shock, are declining over the maturities and have

opposite in sign effect on shorter maturities and long maturities. However, the magnitude can

17



be very different. The intuition for this remark is that a monetary policy shock is expected to
dissipate at business cycle maturities leaving the long end of the curve unaffected. Conversely,
a shift to the parameters of the policy rule can impress a stronger rotation on the long-end of
the curve.

The results reported above support this intuition, in fact, the impact of a shift to the rule
parameters onto yields with long maturities (i.e. for large n), conditional on a demand (or
supply shock) is

(n o 1 -
S~ =S g ot +

while for a monetary policy shock, we obtained

1

-(n Om m
A[H]@E V2 .

n (—1-0"

Hence conditionally on unit shocks (and unit variances), we need to compare

1 1
VS

16(p —1)2 - (e-1A =)

which for a standard range of the parameters gives ¢, 6 and (¢ — 1) between zero and one.
Therefore while at longer maturities a monetary policy shock has effects of roughly an order
of magnitude 10? smaller than a shift to the rule parameters.

For the standard range of parameters, ¢, § and (¢ — 1) lie between zero and one. Therefore,
at longer maturities, the effect of a monetary policy shock is approximately two orders of
magnitude (10%) smaller than that of a shift in the rule parameters. Figure (A.1), plots the
impact of the different shocks, for a set of parameters similar to those used by Smith and
Taylor (2009). It also reports a monetary policy shock in the case in which the central bank

does not respond to the consequences of it own shock.

Lemma 4 (Magnitude of the effects at the long end of yield curve). At longer

maturities, the impact of a monetary policy shock on yields is significantly smaller than the

18



Figure A.1: THE REACTION OF THE YIELD CURVE TO SHOCKS (MODEL I)
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Notes: The figure compares the impact on the term structure of interest rates resulting from a shift in the
policy rule (blue), a monetary policy shock (orange when ¢ = 0 and green when ¢ = 0.5), and an information
shock (light red). The calibration follows Smith and Taylor (2009). In grey, the figure reports the term
structure’s reaction under the assumption that the central bank does not respond to the macroeconomic
consequences of its own monetary policy shock, which follows an AR(1) process with an autocorrelation
coefficient of 0.5, which follows an AR(1) process with an autocorrelation coefficient of 0.5. n = 120 are 120
quarters (i.e., 30 years).

impact of a shift in policy rule parameters. Specifically, for standard parameter values, the
effect of a monetary policy shock declines at a rate of approximately 10* times smaller than

that of a change in policy parameters.

A.3 Imperfect information and the yield curve

The model discussed in the previous section, following Ellingsen and Soderstrom (2001),
captures only the expectations component of interest rates without accounting for term
premium dynamics. Moreover, it does not explicitly model the information flow between
the central bank and market participants. In this section, we introduce a stylised imperfect
information framework that integrates the policy rule from the previous section into an affine
term structure model with a term premium, as in Smith and Taylor (2009).%

All the variables are considered in deviation from their steady state, and their dynamics

8 As compared to the previous model, for sake of simplicity was consider a policy rule that only responds
to inflation. Results in Smith and Taylor (2009) show that the results on the response of the yield curve to
shocks extends to the case of a more general policy rule reacting to output gap, and hence this applies also to
our discussion.
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is described by the following set of equations

re=(¢+ S)m + Tmply 3 (48)

vt =+ (49)
Gt = bp_1 + osuy (50)

i = —% log P, (51)
P — By [mi B (52)
Mepr = e 2N AT (53)
At = —y — Yy, (54)

T =am_1 — 0(ri_1 — m_1) + opuy. (55)

Eq. (48) represents the (linearised) monetary policy rule, where the short-term nominal
interest rate, ry, responds to inflation with a policy response coefficient ¢ + ¢, > 1. Eq. (49)
models the transitory policy shock as an AR(1) process with coefficient 0 < ¢ < 1, capturing
the policy inertia observed in the data. Eq. (51) defines the yield to maturity of a zero-coupon
bond with face value one, maturing in n periods, where Pt(n) denotes the bond price at time .
Eq. (52) states a no-arbitrage condition, requiring that the price of an n + 1-period bond at
time ¢ equals the expected present discounted value of an n-period bond at time ¢ + 1, given
the stochastic discount factor m;. Eq. (53) specifies the stochastic discount factor, adopting
its functional form from the affine term structure literature. Eq. (54) models the risk factor
as a combination of a constant risk premium, ~, and a time-varying risk premium, , linked
to inflation fluctuations. Finally, Eq. (86) describes inflation dynamics as a function of the
lagged real interest rate and past inflation.

The model features three independent and identically distributed normal white noise
shocks: an inflation shock, a conventional monetary policy shock, and a policy rule shifter,
denoted as u¢ ~ i.i.d. N(0,1) for i € (7w, mp, ¢).

Although we consider shifts in the Taylor rule parameter, we assume that both the central
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bank and private agents perceive it as fixed and known at any given time. Consequently, any
changes to the Taylor rule parameters are fully unanticipated and regarded as permanent,
aligning with the intuition proposed by Bauer and Swanson (2023a,b).

This model admits an affine structure for the yield curve:

i™ = a, + by, + e, (56)
Pt(n) — eAn+Bn7rt+CnVan‘ (57)
with the following relationships:
A, B, Chp
ap = ——, bn:__7 Cn = ——. (58>
n n n

A.3.1 Solution by the method of undetermined coefficients

We solve the model using the method of undetermined coefficients. For n = 1, where z'gl) =1y,

Eq. (48) yields

ay = O, Al = U, (59)
bl = ¢7 Bl = _(ba (60)
cC1 = O'mp, Cl = —O'mp. (61)
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From Eq. (52) one obtains

Pt(n+1) =E, mt+1pt(fﬂ

— Et e—Tt—%)\%—Atu?Jrl eAn+Bn7rt+1+CnVﬁpl:|

= Et e_¢7ft—0mpl’tmp_%)‘%—At“fﬁ-l"‘An"'Bn”tH"'Cﬂ’/ﬁpl]

=E,

6*¢mfampvtmpf%/\?fAtuzr+1+An+Bn (am5(¢>7rt+ampu2”p7rt)+oﬁuf+1)+Cn((utm”+uﬁ”1)]

_ e*¢ﬂt*0mpV;,Lp7%A?+An+Bn (am76(¢>7rt+0'mp1/t"m77rt))+§CnutmpEt

€_>\tu’7;+1 +Bnawuf+1+0nuﬁp1]

_ e—qﬁm-i—(CC’n—Jmp)uzﬂp—%)\?—ﬁ-An—i—Bn(a7rt—5(¢7rt+amp1/:w—7rt))+%()xf—i—B,%agr-‘rC%)—/\tBnaﬂ

— €_¢7rt+(ccn_(1+Bn5))ampV:np+An+Bn(a+5(1_¢))7rt+%(B%U£+C%)+Bn0'7r(7+¢7rt)
— Ant3 (B2 +C2 )+ Buowy+(—¢+Bn(atd(1-6) +0x1))mi+(CCOn—(1=Bnd))ompr;
where the equalities are derived by sequentially substituting the no-arbitrage condition, Eq.
(53), Eq. (57), Eq. (48), and Eq. (86); then taking the expected value of the exponential of a
normally distributed variable, and finally using Eq. (54) before simplifying the expression
and factorising.

Matching coefficients with Eq. (57), one obtains the following set of recursive equations

for the coefficients:

1
A1 = A, + 3 (B2o2 + C2) + Buoxy (62)
By =—¢+ By(a+6(1 - ¢) + o)) (63)
Chi1 = CCy — omp(1 + B,9) (64)

22



By using the initial conditions in (59)—(61), we can write:

Bu= 03 (at (1~ 9) + 0.) (65)
b, = %i(a+5(1—¢)+aﬁ¢)i (66)

Substituting in the expression for C,,, we obtain

Cn = —0Omp

G Z ¢t <1 — 5¢Z (a+6(1—9)+ a,rw)i>] (67)

¢ty Z ¢t <1 — (5¢Z (a+6(1—9)+ aﬂw)i)] (68)

Omp
n

Substituting in the equation for A,, we obtain

n—1

1 .

Apn = Ap+o0.yBn+ 5 (aﬁBfL +o2, Z 1+ 5Bj)2> ; (69)
=1

which can be solved iterating the difference equation.

The sum in Eq. (65) is finite under the condition
la+ (1 —¢) + o] < 1.

Restricting the parameter space for ¢ > 0, the condition implies that

a—1+o0,9

o >1+ ;

(70)

Thus, we assume that the random walk, in every period ¢, is bounded below by the term in

equation (70). We can now simplify the above expressions by defining

KR=a+0(1—¢)+ o1,
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and using the standard formula for geometric sums, for |x| < 1, to obtain

1— k"
B, = — , 71
s ()
B 1— Cn—l 5¢ 1— Cn—l ,in—l o Cn—l
Co = —0Omp |C"! — — , 72
Omp |G TG 1—5( 1—¢ "Th¢ (72)
and
o1 —kK"
b, = — , 73
nl—k (73)
Omp . 1— Cnfl 5¢ 1 — Cnfl I{nfl _ Cnfl
o= I . - . 1
¢ n ¢ 1—-¢ 11—k 1-¢ " k—C (74)
Let us summarise these results in the following proposition.
Lemma 5 (Yield curve). The yield curve described by the model in Eq.s (48-86) is
i™ = a4, + by + cuul™ (75)
with coefficients of the disturbances given by
n i n—2
b, — D 11’{7 anamp(l_‘S?bZz 0“)’ (76)

n n

fork=a+0(1—9¢)+ o0, and |k| < 1.

A.3.2 The impact of a policy parameter shift

We can now examine the derivative of b, with respect to a shock to ¢ at time ¢ (i.e., uf).

This analysis quantifies the impact on bond yields of varying maturities when the central
bank adjusts its response to inflation beyond market expectations.

First, note that the geometric series in Eq. (65) is

1— kK"

1—k

n—1
Z (a+0(1 — @) + ox0p) =
=0
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Next, we differentiate b, with respect to uf to capture a shift in ¢:

O, o5l —=r"  ¢(1—r)(=nk""") = (1-r")(=1)

gif nmil-k n (e (—d0y) (78)
= % o (1= ) = (L= )56+ ) 19

This derivative is positive for small values of n and negative for large values, under the
assumption that

a+0+ox>1, (80)

a condition typically satisfied when inflation is persistent (i.e., o approaches 1) and 1) > 0.
Therefore, a key prediction of the model is that if a central bank becomes more aggressive in
responding to inflation, bond yields at short maturities increase, while those at longer maturi-
ties decrease, as in Smith and Taylor (2009). In Section A.4, we discuss the generalisation of
these results to a setting where the central bank responds to both inflation and output gap.

It is interesting to note that for large n,

abn O¢ 1

Lemma 6 (Shock to the parameter of the policy rule). If the parameter of the central
bank’s response to inflation changes, interest rates on bonds of sufficiently long maturity move
in the opposite direction to the change in the parameter and the short-term rates.

A.3.3 The impact of shocks to inflation

Let us first observe that the derivative of b,, in n is

1 — K" 1 1— K"
On 0 <¢ /1):__ ¢ ( " +/<:”log/i)<0,

%:% nl—rx nl—k n
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hence, the yield curve response coefficient to inflation is always positive (since |b,| > 0 for all

n) and decreases over the horizons, approaching zero at a rate of n='.

Lemma 7 (Response to inflation). The yield curve response coefficient to inflation is
always positive and decreases over the horizons, approaching zero at a rate of n™ 1.

A.3.4 Monetary policy shocks

The effect on the yield curve of a monetary policy shock is described by the coefficients ¢, in

Eq. (74), which can be rearranged as

B Ump i anl _ Cnfl 1 _ Cnfl 5¢
Cn—TC +K R_C + 1_C (1_1_,€>:|7 (82>

Let first note that on impact (n = 1) the effect is positive and equal to ¢; = 0y, while after
one period (n = 2) is equal to (. Since the first two terms in parentheses are positive for any

n, the sign of ¢, depends on the last term. If k is sufficiently large, i.e.

k>1—=00¢ = a+o+ o0 > 1,

then there will exist some n* for which ¢, becomes negative. Interestingly, it is the same
condition that holds for b,,.

For large n, Eq. (74) behaves as

Om 1 6¢ o Om 1 1
C”Nqu(l_l—r)__npl—ml—C(5¢+K_1>’ (%)

which shows that the impact of the shock on the yield curve declines with n='(1 —¢)~'.

Lemma 8 (Monetary policy shock). Following a monetary policy shock the interest rates
on bonds of sufficiently long maturity will move in the opposite direction to the monetary
policy shock and the movement of the short maturities. The magnitude of the effects declines

with the maturity of the bond, at rate n=*(1 —¢)~1.
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A.3.5 The magnitude of the effects at the end of the yield curve

Suppose ¢ = 0 and observe that:

oy 1 o
o T - R -0 (@g+k=1) o
Pn 6L (5441 (85)

auf A (1 —kK?)

Hence conditionally on unit shocks (and unit variances), the long run effects of a shock to

the rule as compared to a monetary policy shock are

1 1 1

(1—k)? ' 1—-rk1-=C¢

Thus, kK = a + 6(1 — @) + 0.0 > (, i.e. if the inflation persistence « is sufficiently larger
than the autocorrelation of the monetary policy shocks, then the effects of a shock to the
rule would impart a significant rotation to yield curve with its long end moving in opposite
direction to the short end, while the monetary policy shock would have negligible effects on

longer maturities.

Lemma 9 (Magnitude of the effects at the end of the yield curve). If the persistency
of inflation s sufficiently higher than the autocorrelation of a monetary policy shocks, then
at longer maturities, the impact of a monetary policy shock on yields is significantly smaller

than the impact of a shift in policy rule parameters.

A.3.6 Imperfect Information

We now embed the term structure model, in which the policy rule responds only to inflation,

in an environment characterised by imperfect information, following Miranda-Agrippino and

Ricco (2021) and Pirozhkova et al. (2024).
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Figure A.2: THE INFORMATION FLOW
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Notes: The figure presents the information flow in the economy. Agents do not observe directly the state of
the economy but receive noisy private signals, s;; at the beginning of time ¢ which are used to update their
information set from the end of the previous period, i.e. Z, 7—7. The information set at the end of period ¢
contains the observed policy rate and the signal about the new policy parameter, ¢z.

The inflation process in the model is:
™
T = am_q — 6(r—1 — m_1) + opuy,

= am_1 — (¢ + r_1)T—1 + Ompyy — 1) + Oxuy,

= (= 8(¢+ P11 — 1))m_y — S0mpul™, + opuil (86)

Each agent i in the economy do not directly observe m;, but receives a private noisy signal of

7; at the beginning of the time period t = [t, ] (see Figure A.2):
Sii = Tt —+ Vivlf s V’i,lf ~ N(O, O'nJ/) . (87)

Agent also form beliefs about the Taylor rule parameter, i.e. ¢ + éﬁ\t_l, by assuming that it is

equal to last period, i.e.

¢I:%:Fﬁ<¢+$tfl>

Given the signal, and conditional on their information set Z, = {s;+, ¢¢, Z;— }, agents update

their expectations from closing time of the previous period, F; =7, and form expectations
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F; ym given their information set via the Kalman filter

7

Fiym = Kisig+ (11— K)F, =m0, (88)

E,jﬂ_tJrh = (CK — 5(¢; — 1))hE7_t7Tt Vh >0 y (89)

where K7 is the Kalman gain which represent the relative weight placed on new information
relative to previous forecasts. When the signal is perfectly revealing K; = 1, while in the
presence of noise Ky < 1. Thus (1 — K3) is the degree of information rigidity faced by the
agents.

Given their forecasts, at ¢, agents trade bonds of different maturities with the following
interest rates

i = a, + b, Fyym | (90)

and prices

Pt(n) — eAn“l‘BnFiLtTrt . (91)

At opening time t the central bank observes a private noisy signal of the state of the

economy in period ¢
Scbt = Tt + Vebt Vebg ™~ N(O, Ucb,l/) . (92>

We can assume without loss of generality that the signal observed by the central bank is more
precise than the one observed by agents: o4, < 0,,. Given the signal, the central bank
updates its expectations from closing time of the previous period given its information set via
the Kalman filter

Foymy = Kasay + (1 — K)oy, (93)

C

Fcb,lfﬂ—t-f—h = (O[ — 5(¢ + ggt — 1))hFCb,§7Tt \V/h > 0 s (94)
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where K is the bank’s Kalman gain. Given its nowcast for inflation, the central bank sets

and announces the interest rate, by following its policy rule:
i =1 = (¢ + &) Fapymy + Opmpt™ (95)

At closing time ¢, agents observe the new interest rate r, and receive a noisy signal about

the Taylor rule parameter of the central bank, i.e.

¢f:¢+(/b\t+cta G~ N(0,0¢) .

Given these two signals they update their expectations and trade bonds at different maturities.
The policy rate is to the agents a public signal about the state of the economy. In fact,

the policy rate depends on the value of inflation at ¢ as”

re = (¢ + éﬁ\t)Fcbdﬂrt + Ompty "
= (¢ + be)(Kepseng + (1= Kep) Fy570) + O™
= (¢ + &) (EKeymy + Keyvepg + (1 — Kop) Fyp=ym,) + 0t
= (¢ + S (Kaymy + Kayveny + (1 — Kap) (0 = 6(¢p — 1)) Fup i1 — 00 mptiy™?,) + Opptt™

= (¢ + é;t) (chm + KapVep s+
. - n . Tt—1 — Umpu:ipl o mp mp
(1 - Ka) ((a 0 (QZ) + 1 1)) ( ot o ) 50mput_1> ) t Tmplly -

Hence, conditionally, on observing r; and r;—; (and knowing K ), agents extract a public

9We assume that the central bank does not update its nowcast between ¢ and £, i.e. Feygmi1 = Fopgmy_1.
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signal on 7,°

S0 = Mt ver— K3'(1— Ka)((a—0(¢= — 1)) — 6))ompuy™y — &7 " K3 ompuy™

C

= T+ D/cb,} (96)

At t, conditional on this public signal, agents update their information set, Z; = {4, pr, Z; },

and their forecasts

Fomi = Kodpi+ (1 — Ky)Fyymy (97)
Figm = (o + 5)Fz‘,f7Tt —ory (98)
Fmin = (= 8(¢; ' — 1)) Fpmga Vh>1, (99)

where K is the Kalman gain, as given by the noise in the public signal 7, ;.

We can obtain an expression for the revision of expectations, from Eq. (97)

Fgm — Fiyme = Ko S — Fipmi]
= Ko(m + Deng) — Ko [Ki(m + vig) + (1 — Kq) F, =]
= Ko(1 — Ky)m + KoV g — Ko K13y — Ko(1 — K) F =
= Ko(1 — Ky)m + Kol — KoKy
— Ko(1 — K1) (e + 0)F =5m—1 — 0741)
= Ky(1 = K1)(( + 6)myq — 0141 + 0uy ) + Kol — Ko K1y
— Ko(1 — Ky) (a4 0) Fy =gy —1 — 07y 1)

= K2(1 — K1>(Oé + (5) [ﬂ-t—l - F’7m7Tt_1}

)

(100)
+ K2 [(1 — .Kvl)O'ﬂ—U;r —|— ch,f — KIVi,z] .

10The noise in the signal §; is not a white noise. Hence it does not fulfils the standard conditions under
which the Kalman filter is derived. Unmodelled dynamics can degrade the filter performance. We abstract
here from these consideration that would require agents to adopt more sophisticated filtering techniques.
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The expression is obtained by employing in order (i) Eq. (96), (88), and (87); (ii) Eq. (98);
and (iii) the dynamic equation for inflation 7, = (a + §)m_1 — 011 + o,uf. To find an

expression for the forecast error (m_y — F,7=gm_1) in Eq. (100), first note that Eq. (97)

1
implies

T — Fim = K31 — Ks) (Fyeme — Fiami) — Uy (101)

Then Eq. (101) one period earlier can be written as

Ty — Fjmmey = Ko '(1 = Ky) [Fyg=miy — Fipamia] — Ui

= K2_1(1 - Kz)(a + 5)_1 [(Fi,ﬁﬁt - E,ﬂﬂt)
(102)

+ 0 (r1 — Figoarie1)] = Doyt -

Substituting Eq. (102) into Eq. (100) yields

Fopmy — Fyymo = (1 — K3)(1 — Ky) [(F',ﬁﬂt — Fyam) + O(re—1 — Fz‘,@ﬁ—l)]

)

(103)
+ KQ [(1 — Kl)(aﬂuf — (O{ + 6)ﬂcb,m) + ﬁcb,f — Klyi,z} .

Taking the average over the market, i.e. over the index 7, one gets the following proposition.

Lemma 10 (Expectation revisions). A policy announcement triggers a market-wide revi-

sion of expectations, i.e. the information effects, of the form

Ffﬂ't — _Fvlgﬂ't = (]. — Kl)(l — KQ)(Fﬁ’ﬂ't — Fﬂﬂ'ﬁ
—|— (]_ — K1>(1 — K2)5(rt_1 — Fﬂﬁi—l) (104)

+ KQ |:(]_ — Kl)O'ﬂ—U,? — (]_ — Kl)(O[ + 5)ch,m + ch,f} .

From the point of view of the agents, it has to be true that

ry = gbfﬂ,ﬂn + O-mpF'i,fV:fnpa (105)
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i.e. the agents decompose the rate observed into their updated expectations of inflation and
their guess of the value of the monetary policy shock, given their perceived parameter of the
Taylor rule.

From Eq. (89) and (98), one can derive expression for the term ¢(Fr—m; — Fy,_17m;) in Eq.
(104):

G (Fi=gme — Fyoam)
= Gr—1(a+ 0) Fr=gmi—1 — ¢4—1074—1 — y_1 (a0 — 0pp—y + 0) Fy_1m4
= — (¢=1 — b)) (@ + O) Fimpma + (a + ) (ra — Fiaw™)
— 011 — (@ = 01 + 0)Fy_11 1
—(a+ 08— ¢r_16)(re_y — Fr_yrooa)+

— (o1 — 1) (a + 0) Fgm1 — (6 + o) F_uy™)

We can substitute this expression in Eq. (103) to obtain

re— Fre = (65 — 00 Fime + GmpFs i}
+ (1= K1) (1= Ko)duoy 'y (a0 + 6 — ¢y _10) (re1 — Fyoare 1)
— G (=1 — dea)(a + 0) Fmyme 1 — i1 (6 + @) ™
+ (1 — K (1 = K)o(re_y — Fr_yriy)
ol [(1— Ky)ogul — (1= Ky)(a 4 8) o=t + Ven]
= (1= K2)(1 = K2) (60 + 610720+ 8 = $110) ) (s = Froarin)
+ (¢ — ¢ Frm — ¢u 1 (f=1 — ) (@ + 6) Fpmi
+ Omp Fipuy™ — 606,21 (0 + a) Fyoau™)

+ ¢ I [(1— Ki)opuf — (1 — K1) (o + 8) g =1 + Ve ]

This equation shows that monetary policy surprises in a model with imperfect information

are autocorrelated and depends on a convolution of past and current shocks.
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We can rewrite the equation collecting the past monetary policy and observation noise

terms (i.e. terms D7) in vy

= Bryo= (1— K))(1 — K») (mé(a + 5)) (rioy — Fr_yriy)
+ (¢ — ¢ Fim — 0161 (d=1 — dur) (@ + 8) Fmpmy

+ ¢ Ko (1 — Kv)opul + ompFy gu™ + 0

Let us observe that

b6l = ¢+ %tfl + G-t _ ¢+ C/gt—Q 1L U¢Uf—1 + G
S O+ Gr—2+ G2 O+ Gt + G2

O'¢ & 1
~1+—F- (1 — G
¢+¢t—1Ut ! ¢+¢t—1(c 1 2)
1+ 20+ G = Gea) (106)

and that

Op — ¢y = Cgt — Cgt_l + G — G-t

= oguf + ¢ — 1, (107)

and putting the two results together, we note that

1
¢§¢é(¢ﬁ - ¢g) ~ (1 + %%?4 + a(thl - €t2),) <U¢Uf_1 + G—1 — thz)
R oguf y + G — Goa (108)

We can now complete our derivations by using the law of motion of the Taylor rule
parameter, drop all the third order terms (i.e. where a term of the type ufuf/ multiplies other
shocks), and absorb all the terms in aggregate observational noise (i.e. in ¢; and 747—7) into

vy. Thus we obtain the following lemma.
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Lemma 11 (Policy rate surprise). The average market forecast error on the policy rate is

Tt — Flﬂ“t = (1 — K1)<1 — KQ) (CY + 5) (Tt—l — Fﬂnﬁ—l)

TV
autocorrelation

+ (1= K)(1— Ky) (a+0) ¢ oguf_ i (ri1 — Froari)

N J/

NV
rule parameter change

+ ad,ungm — a¢uf_1(a + 0) Fe=gmi—1 + 91 Ko (1 — Ky)oqzuy

v
rule parameter change

+ ¢K2(1 — Kl)O}rU? +0mpFi,guInp + vg. (109)
infotﬁect

where v, is convolution of past and current shocks.

To understand the structure of surprises along the yield curve, we need to consider Eq.

(90), and obtain the following proposition.

Lemma 12 (Monetary policy surprises). The price revisions, i.e., the monetary policy

surprises, for bonds at longer maturities are

n n n abn m
Aggit” =" =i = bu(Fem — Fim) + 5 (¢r — ¢0)(Fem — Fym) + ¢, Frf™ , - (110)
N —~ / 8“1‘, ———
info effect ~ ~~ - mp shock
rule parameter change

where the derivative of b, with respect to uf), captures the shift in the policy parameter, and

hence its effect on yield at different maturities.

We can now apply the insight provided by Lemmas 6, 7, 8 and 9 on the effects of shocks
to the yield curve to the propagation of policy actions, under imperfect information. Figure
A.3, provide a summary of the effects for different shocks, using the parametrisation proposed

by Smith and Taylor (2009).

Lemma 13 (Policy shocks, shocks to the rule and information). Under imperfect

information:
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Figure A.3: THE REACTION OF THE YIELD CURVE TO SHOCKS (MODEL II)

1.0 S S S S S ]
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— MP shock with no response of CB ({ = 0.5)
-0.5¢+ . Information shock
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n
Notes: The figure compares the impact on the term structure of interest rates resulting from a shift in the
policy rule (blue), a monetary policy shock (orange when ¢ = 0 and green when ¢ = 0.5), and an information
shock (light red), for the model with endogenous term premium. The calibration, for quarterly data, follows
Smith and Taylor (2009). n = 120 corresponds to 120 quarters (i.e., 30 years). Finally, in grey, the chart
reports the term structure’s reaction under the assumption that the central bank does not respond to the
macroeconomic consequences of its own monetary policy shock, which follows an AR(1) process with an
autocorrelation coefficient of 0.5.

(a) A shock to the policy parameter, when understood by agents, causes interest rates on

bonds with sufficiently long maturities to move in the opposite direction of both the

parameter change and the short-term rate forecast error.

(b) An information shock raises the entire yield curve, with its effects diminishing over

longer horizons.

(c¢) If inflation persistence significantly exceeds the autocorrelation of monetary policy shocks,
a monetary policy shock raises short-term yields, exerts small negative effects on medium-

term maturities, and has negligible effects on long-term maturities.

36



A.4 Policy rule with inflation and output

Consider an extension of the model discussed in the previous section, where the central bank

responds to real output alongside inflation:

_ mp mp
Ty = ¢71-7Tt + ¢yyt + Omply = ¢Xt + Omply

1
Mi41 = €Xp <—7’t - §>‘;)‘t)

/\tzv—i—\lfxt

Yo = BYi—1 — 0(ri—1 — m—1) + Uyuij

T = Q1 + Ly + oruy

where we define

@

Py
Pr

Xt = ) u; = )
Tt Uu

+3x

and

_77Z)11 ¢12
1/}21 —%2

U =

The shocks uf, uf, u;™" are i.i.d as N (0,1) and uncorrelated.

Il
©
Il

o1

Vo2

(85)
(111)
(112)

(88)

(113)

(114)

Equation (85) represents the policy rule, incorporating real output in the central bank’s

interest rate setting. Eq. (111) defines the pricing kernel, now extended to a matrix form. Eq.

(112) describes risk terms related to inflation and real output, and Eq.s (88) and (113) model

the dynamics of output and inflation.

The yield of an n-period bond remains an affine function of inflation and output, expressed

as:

b = a, + V%,
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where

a, is the intercept and b,, is the n-period response coefficient vector:

Rewriting Eq. (88) and (113) as a VAR:

where

X = Px; 1 + 2uy
N R I N
(B —6¢py) a—1d(dr—1) Lo, Oy

As discussed in Smith and Taylor (2009), the response coefficient for bond yields is:

which

and

-2 (Bo-r) o

=0

extends the previous formula in Eq. (66), and can be rewritten as

by==[I—(Q=S0)") (I - (Q-x0)"']" .

S|

1

b~ — [T = (Q-Z0) ']

where

n

11 L(0(dr — 1) + Yr20y) — Y220 (B — Iy + Y110y) — Y2104
nD (1 — ¢x) — Y120y 1 —B+0dp, — oy ’

D = (5 - 5¢y)¢220w + 5L(¢7r - 1) + L¢120y + ¢11¢220w0y - 1/1121/1210wa — P20
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Define K = & — XV, for which

Koo = & — 10(pr — 1) — Loy 19 + Onthog = @ + LK12 + 012, (122)
K12 = —0(¢x — 1) — oytna, (123)
ki1 = —0¢y + oy, (124)
ko1 = (B — 0¢y) + Loy — Oxthar = Lk — Oxtay. (125)

The derivatives of b, with respect to ¢, and ¢, are:

ob, 1 1-¢ Z?:_f (iﬁby"#ﬁl + Lﬁbw“zﬁl) + Z?:_f ’féz (126)
o6, n nel i
oy Zi:ll K12
n—1 4
ob, 1 i1 K1
5 _ 1 1 > 1 F12 1 (127)
T n n— . i— i— n— i
1 - 521':1 (quy"{ml + L¢w”221) + Zi:l Kag

This expression, is the equivalent of Eq. (79) in the model with the central bank responding
only to inflation, and reflects counteracting effects. Two summations arise: one geometric,
representing direct policy influence, and the other arithmetic-geometric, capturing inflation
persistence and the output gap. Using this formulation, the policy response’s effect on
long-term yields can be assessed.

Let us start from the Eq. (127):

bz, 1 = i— 1 — . i— i
3;% T (1 - ;@21) n (5;Z(¢y“121 + L%F&gzl)) : (128)

By computing the usual formulas for geometric and arithmetic series ones gets:

b, 1 (1+ 1— Koyt 5 (qsyl—n/{’f2_1+(n2— 1)KT, +L¢W1—nm§2_1—l—(n2— 1)/{32)) |
aqﬁw n 1-— K99 (1 — /{12) (1 — KJQQ)

(129)
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For n large we get:

0bs 1 1 1 1
o= (1 — R — — ).
0pr m ( A K22 ’ (¢y(1 — K12)? " L%(l - ’ﬁ22)2>)

Now consider the second entry in Eq. (127)

Thus, for large n we get:
oby, 1 1

8¢7r B 5@11 - /<621'

Hence, the total effect on the yield curve of a change in ¢, is:

Oby _ Obiy  Obon
Dor 00, " 8%

5 %1 — e+ (n — 1)K, N 1 —nkhyt + (n— 1)k, -
(1 — ligg)?

and for large n is
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Consider now Eq. (126):
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Thus, following the same steps:

8bn . 8b17ny 8b2,n
dp,  0p, " g,

1 1—rt 1 1—r5t
= — | Fe—— e+ — [ 1+ —2
n 1 — K9 n 1 — Koo

T (137)

n— n n— " (138)
s ¢1—nl€111+(n—1>:‘<&11+L¢1—nl€211+(n—1)ﬁ21 -
Y (1 — Hll)Q T (1 — H21>2 b
And for large n we get:
ob,  0Oby, . Oby, (139)

~ T
1 K12 1 1 1 1
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Hence, for a shock of O'¢uf, as in Eq.s (20-21) the total effect would be given by:

oi™  oby., by
= L g,

- oby Oba.,
9o~ b, ° A, * 90n

Loy + a¢ 04

(141)

A.4.1 The magnitude of the effects at the long end of the curve

To assess the magnitude of the effects of a shock to the rule parameters, we use the parameter
calibration of Smith and Taylor (2009). For large n, the dominant term in Eq. (141) determines
the effects at longer maturities:*!

(n 1 1 1 10D
A[{—I]Z,S ) ~ — { } (L + 1>O'¢ — E {—d)} (L + 1>O'¢.

n 1-— K99 (1 - ’i22>2

It is important to observe that ke = 0.946, based on the parameter estimates of Smith and
Taylor (2009). Since kg9 is close to one, for a reasonable range of values of the monetary policy

autocorrelation coefficient, the shock to the rule induces a large effect on longer maturities,

"The calibration in Taylor and Smith is ¢ = 0.2, o, = 0.75, § = 0.2, 0, = 0.36, 11 = 0.1, ¢12 = P21 = 0,
a2 = 0.15, 8 = 0.2. Assuming a = 0.95, ¢, = 1.2, and ¢, = 1.2 we obtain: k12 = —0.04, k11 = 0.035,
KRo1 = 0007, Koo = 0.946.
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Figure A.4: THE REACTION OF

THE YIELD CURVE TO SHOCKS (MODEL II WITH OUTPUT)

1.0F T
0.5/ 1
0.0p 1 — Shock to rule
I Shock to rule (with output)
-0.5f 1
-1.0f -
0 20 40 60 80 100 120

n

Notes: The figure compares the impact on the term structure of interest rates resulting from a shift in the
policy rule in the model without output in the full model of section A.3 (blue), with a shock to rule of the
same model where we also model output, in violet. The calibration, for quarterly data, follows Smith and
Taylor (2009), however we assume o = 0.95 instead of o« = 1 (larger persistent of inflation) so that |keo| < 1.
n = 120 corresponds to a maturity of 30 years.

whereas the monetary policy shock has negligible effects. Figure A.4 plots the response of the
yield curve to a shock to the rule in the model without output (in blue) versus the model with

output (in violet). Notice that in both models, using the parameter estimates from Smith

and Taylor (2009), the response at longer maturities becomes negative and large.
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B Data

sources

Table B.4: DATA

Figure

Data Source

Figure (1)

FRED
DGS2: Market Yield on U.S. Treasury Securities at 2-Year Constant
Maturity, Monthly, Not Seasonally Adjusted, Percent

PCEPILFE: Personal Consumption Expenditures Excluding Food
and Energy, Chain-Type Price Index, Index 2012=100, Monthly,
Seasonally Adjusted

OUTGAP: Difference between GDP (GDPC1) and potential GDP
(GDPPOT), expressed as a percentage of potential GDP, Monthly,
Linearly Interpolated

GDPC1: Real Gross Domestic Product, Billions of Chained 2012
Dollars, Seasonally Adjusted Annual Rate

GDPPOT: Real Potential Gross Domestic Product, Billions of
Chained 2012 Dollars, Quarterly, Not Seasonally Adjusted

Figures (2) to (6)

Blue Chip Financial Forecasts

BCFFs for Federal Funds Rate, Percent per annum, average for
quarter, 1993-2021

BCFFs for Real GDP, Q/Q change, SAAR, 1993-2021

BCFFs for GDP price index, Q/Q change, SAAR, 1993-2021
BEA & FRED

‘First release’ realisations for Real GNP/GDP (ROUTPUT), Q/Q
Growth (Annual Rate, Percentage Points)

‘First release’ realisations for Price Index for GNP/GDP (P), Q/Q
Growth (Annual Rate, Percentage Points)

Effective Federal Funds rate

Figure (10)

Gurkaynak et al. (2005)
Dataset high-frequency price revisions

Tables 3-4

Tealbook (formerly
Greenbook projections for Q/Q growth in real GDP, chain weight Greenbook) Data Sets
(annualized percentage points)

Greenbook projections for Q/Q growth in price index for GDP, chain
weight (annualized percentage points)

Greenbook projections for the unemployment rate (percentage
points)

Note: data used also in Figures (2) to (6)

Figures (12)-(14)

FRED-MD &
INDPRO: IP Index Gilchrist and Zakrajsek (2012)

UNRATE: CivilianUnemploymentRate

FEDFUNDS: Effective Federal Funds Rate
GS1-GS5-GS10 Treasury Yields

CPIAUCSL: CPI :All Items

S&P500: S&P’s Common Stock Price Index: Composite

Excess Bond Premium

Notes: Datasets adopted in the paper.
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C Additional charts and figures

C.1 Remarks — additional charts

Figure C.5: RoLLING RMSFE (BLUE CHIP SAME MONTH GREENBOOK)
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Notes: This figure shows rolling RMSFEs for quarter over quarter real GDP growth and quarter over quarter
price deflator growth, for both the current quarter (h = 0) and the next quarter (h = 1). For each year, the
RMSFEs are computed as 5-year centred moving averages of year over year averages of RMSFEs for each
forecasters. The solid lines represent the rolling RMSFEs for the Greenbook (green), the mean forecaster
(blue), and the median forecaster (light blue). The dashed black line corresponds to the average RMSFE
across all individual forecasters. Greenbook forecasts are aligned with the closest preceding Blue Chip forecast
date for each FOMC meeting. Only forecasters who have been consistently active for at least 15 years and
provided current quarter forecasts in at least 6 months of each year are included in the computation of average
RMSFEs. Results with a larger set of forecasters confirm better performance of the Greenbook with respect
to the average RMSFEs across forecasters and similar performance with the other forecasters. Sample goes

from 1993 to 2019 (end of availability of the Greenbook).
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Figure C.6: DISPERSION OF ONE-QUARTER-AHEAD MARKET FORECASTS FOR FEDERAL
FUNDS RATE

5th-95th range in month 1
5th-95th range in month 2
5th-95th range in month 3
—— Effective FFR

~ U

Federal Funds Rate
N W

Notes: The figure illustrates the dispersion of market forecasts for the next quarter of the average FFR
alongside the actual average realised rate. The purple area represents the range between the 5* and 95"
percentile of the forecasts done in the first month of each quarter. The green area represents the same range
for the second month of each quarter, and the yellow area represents the same range for the last month of

each quarter. The blue line corresponds to the realised quarterly average of the FFR.
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Figure C.7: DISPERSION OF FIXED-HORIZON MARKET FORECASTS FOR FEDERAL FUNDS
RATE (CURRENT QUARTER)

5th-95th range in month 1
5th-95th range in month 2
5th-95th range in month 3
—— Effective FFR
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Federal Funds Rate
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Notes: The figure illustrates the dispersion of fixed-horizon market forecasts for the current quarter of the
average FFR, alongside the actual average realised rate. The purple area represents the range between the
5t and 95" percentile of the forecasts issued in the first month of each quarter. The green area represents
the same range for the second month, and the yellow area for the third. The blue line corresponds to the

realised quarterly average of the FFR.
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Figure C.8: DISPERSION OF FIXED-HORIZON MARKET FORECASTS FOR FEDERAL FUNDS
RATE (NEXT QUARTER)

5th-95th range in month 1
5th-95th range in month 2
5th-95th range in month 3
—— Effective FFR

~ U

Federal Funds Rate
N W

Notes: The figure illustrates the dispersion of fixed-horizon market forecasts for the next quarter of the
average FFR, alongside the actual average realised rate. The purple area represents the range between the
5t and 95" percentile of the forecasts issued in the first month of each quarter. The green area represents
the same range for the second month, and the yellow area for the third. The blue line corresponds to the

realised quarterly average of the FFR.
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C.2 Comparison Greenbook and Consensus Economics

This section explains the procedure used to construct forecast evaluation figures for fixed-
horizon predictions of inflation and real GDP growth for Greenbook projections and Consensus
Economics. The forecasts come from two sources: private-sector projections compiled by the
Consensus Economics, and internal Federal Reserve projections released in what was formerly
known as the Greenbook, now referred to as the Tealbook. The aim is to compare these
forecasts to realised inflation and real GDP growth over a consistent 12-month horizon.

Consensus forecasts are collected monthly and report the expected percentage change in
both CPI and real GDP for the current calendar year and the next calendar year. Thus,
these forecasts are provided as fixed-event forecasts fo the current year and next calendar
year, but for evaluation purposes, we convert them to a fixed 12-month horizon beginning
from the month of the survey. To achieve this, a weighted average of the current and next
year’s forecasts is computed. The weights are determined by the number of months remaining
in the year of the forecast. For instance, if the survey is conducted in April, then 9 months
remain in the current year, resulting in weights of 9/12 for the current year’s forecast and
3/12 for the next year’s. This method produces a continuous rolling estimate of the expected
12-month change in CPI and GDP, aligning all consensus forecasts to the same horizon for
comparability.

The Greenbook projections differ in both structure and format. These forecasts are
reported quarterly and expressed as annualised quarter-on-quarter growth rates. In order
to construct a 12-month forecast comparable to that derived from the Consensus data, a
compound transformation is applied. Specifically, the forecasted growth rates for the next
four quarters are first converted from annualised percentages to decimal quarterly rates. Then,
a compounded growth factor over the four quarters is calculated by multiplying the one-plus-
growth terms together and subtracting one. The result reflects the expected year-on-year
change from the time of the forecast, and the same transformation is applied to both real

GDP and CPI projections from the Greenbook.
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After transforming all forecasts into a common 12-month format, they are matched to
observed realisations. For inflation, the realised value is based on the Consumer Price Index for
All Urban Consumers (CPI-All Items), which is publicly available from the FRED under the
series ‘CPTAUCSL’. To align realisations with the forecast horizon, the actual CPI 12-month
growth rate is computed by taking the percentage change in the CPI index from the survey
month to the same month one year later. The resulting figure is a year-ahead realisation that
directly matches the intended forecast horizon.

The realised values for real GDP growth are constructed directly from first-release quarterly
data available in the Philadelphia Fed’s Real-Time Data. This dataset reports annualised
quarter-on-quarter growth rates, which must be transformed into year-on-year changes to
match the forecast horizon. To do this, each quarterly growth rate is first converted to a
decimal rate by dividing by 100 and then by 4 (since it is reported as an annualised quarterly
rate). Then, a forward-shifted rolling product of four consecutive quarters is taken to simulate
the compounded effect over the upcoming year. The formula mirrors the transformation
used for the Greenbook forecasts. The result is a series of forward-looking, realised 12-month
growth rates that are aligned with each survey date.

Forecast performance is assessed using the RMSFE, which is calculated by taking the
square root of the mean of squared forecast errors. RMSFEs are computed separately for
each individual forecaster, as well as for the mean and median of the forecasts reported by
the Consensus Economics panel, and for the Greenbook forecast.

Two additional benchmarks are constructed for comparison. The first is the mean of
individual RMSFEs across all forecasters who meet a consistency threshold, defined as having
submitted forecasts in at least six months of a year, and in at least ten different years. This
average reflects typical individual performance within the forecasting panel. The second
benchmark is the pooled RMSFE, which is computed by collecting all raw individual monthly
forecast errors, squaring them, averaging, and taking the square root. This measure treats the

entire panel’s forecast distribution as a single group and reflects the total collective forecasting
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accuracy.

To ensure consistency in the evaluation of forecast performance, all forecasts and realisations
are aligned using the Greenbook projection dates as reference points. We match the most
recent previous available forecast for each private forecaster with respect to each Greenbook
date. Finally, for each Greenbook release, the corresponding realised value, be it inflation
or real GDP growth, is matched to the 12-month change beginning from the date of that
projection.

These metrics are summarised in bar plots, as shown in Figures (C.9a) and (C.9b), which
display full-sample (1990 to 2019) RMSFEs for inflation and real GDP growth, respectively.
The bars indicate RMSFEs for each consistent individual forecaster. Vertical lines denote
the pooled RMSFE (black dashed line), the mean forecast (blue), the median forecast (light
blue), and the Greenbook (solid green line).

To evaluate how forecast accuracy changes over time, a rolling RMSFE analysis is conducted.
This process begins by computing one-year-ahead RMSFEs at the annual level. For each
calendar year, all forecast errors from that year’s surveys are gathered for each forecast
type—Greenbook, mean, median, and each individual forecaster.

After obtaining these annual RMSFEs, a centred five-year rolling average is applied. For
each rolling year t, the RMSFE is averaged over the five-year window from ¢ — 2 to t 4 2.
This is done identically for the Greenbook, mean, and median forecast series.

The pooled RMSFE in the rolling framework follows the same logic. For each year, all
monthly forecast errors across all consistent individual forecasters are gathered. These are
squared, averaged, and square-rooted to yield an annual pooled RMSFE. The resulting pooled
series is then smoothed using the same five-year rolling window.

These rolling RMSFE series are visualised in Figures (C.10a) and (C.10b). Each line in
the figure corresponds to Greenbook (green line), mean forecast (blue line), median forecast
(light blue line), and the pooled RMSFEs (black line). All series are constructed by first

computing annual RMSFEs for 1-year-ahead forecast errors, then applying a five-year centred
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moving average.

Figure C.9: RMSFE COMPARISONS — CONSENSUS ECONOMICS AND GREENBOOK
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Notes: Bars represent full-sample (1990 to 2019) RMSFEs for each forecaster in one year ahead forecasts error
for growth in real GDP and inflation. Vertical lines mark RMSFEs for Greenbook (green), mean forecast
(blue), median forecast (light blue), and pooled RMSFEs (black dashed). For any additional details, please

refer to the text.

Figure C.10: RoLLING RMSFEs — CONSENSUS ECONOMICS AND GREENBOOK
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Notes: Each series is computed from annual RMSFEs of one-year-ahead forecast errors and the values shown
are centred five-year averages of each series. The green line represents Greenbook, the blue line is the mean
forecaster, the light blue line is the median forecaster, and the black line represents the pooled RMSFEs. For

any additional details, please refer to the text.
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C.3 Comparison Greenbook and BCFF

This section describes the methodology used to evaluate and compare the forecast accuracy
of the Greenbook projections and private-sector forecasts from the BCFF. The analysis
focuses on quarter-on-quarter annualised percentage changes in real GDP and the GDP
deflator, evaluated at two fixed horizons: the current quarter (h = 0) and the next quarter
(h = 1). Realised outcomes are based on first-release data obtained from the Philadelphia
Fed’s real-time data archive and correspond to the same quarterly periods targeted by the
forecasts.

The forecast evaluation relies on a balanced panel of professional forecasters from the
BCFF survey, which has been published monthly since 1980.'? To ensure comparability over
time and avoid distortions due to irregular participation, we restrict attention to a set of
consistent forecasters defined as those who report forecasts for at least 15 years and submit
projections in at least six months of each year at the h = 0 horizon. These criteria filter out
occasional contributors and ensure that our performance metrics reflect sustained forecasting
behaviour.

Greenbook forecasts are released five years after each FOMC meeting they refer to but
are made shortly before those meetings and provide projections for different macroeconomic
variables. For the purposes of this analysis, we focus exclusively on real GDP growth and
GDP deflator, reported as annualised quarter-on-quarter rates. Two forecast horizons are
evaluated: the current quarter and the following quarter. The corresponding realisations are
taken to be the first official releases of real GDP and GDP deflator from the Philadelphia
Fed’s real-time data archive for the target quarter implied by each Greenbook forecast date.

To allow for a meaningful comparison between Greenbook and BCFF projections, forecast

dates must be aligned. Because the Greenbook is tied to the FOMC calendar and the BCFF is

12We start the analysis from 1993 as the label for forecasters become available from that date and helps us
following individual forecasters over time.

3 There are different releases of QoQ growth in real GDP and GDP deflator. We focus on the first release
as it is the closest in time to when the forecasts are made. Results are similar when using the second and
third releases, as also shown in Hoesch et al. (2023).
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released on a monthly schedule, we implement two matching procedures. Under the ‘previous
date’ alignment, we assign to each Greenbook release the most recent BCFF forecast that
precedes it in calendar time. In contrast, following Bauer and Swanson (2023a), we consider
also the ‘closest date’” approach that selects the Blue Chip forecast with the smallest number
of days separating it from the Greenbook date, whether before or after. The BCFF are
realeased on the first day of the month, and we take that date as the BCFF reference date.
Also, to avoid cases where forecasts refer to different quarters (e.g., Greenbook in March
matched with BCFF in April), we exclude all observations for which the Greenbook date
falls in March, June, September, or December. These months correspond to ends of quarters,
when a subsequent Blue Chip forecast might refer to a different reference period.

Forecast accuracy is assessed using the RMSFE. For each forecast type (Greenbook, mean
forecaster, median forecaster, and individual forecasters) RMSFEs are calculated over the full
sample from 1993 to 2019. The results are presented in static bar plots that show individual
RMSFEs for each consistent forecaster, alongside vertical lines indicating the benchmark
performances of the Greenbook, the mean forecaster, and the median forecaster. These static
comparisons are shown separately for the ‘closest date’ and ‘previous date’ alignments in
Figures (2) and (3), respectively.

To explore the evolution of forecast accuracy over time, we construct rolling RMSFEs.
First, monthly forecast errors are aggregated at the annual level to produce year-specific
RMSFEs for each forecaster. A centred five-year moving average is then applied to each
series: for year ¢, the average is taken over the window [t — 2, ¢ 4 2]|. This rolling procedure is
applied separately to the Greenbook, the mean and median forecasters, and to the annual
average across RMSFEs of individual forecasters. The resulting smoothed RMSFE series are
plotted over time in Figure (4), allowing for a dynamic comparison of forecast performance.
All computations are based exclusively on forecasts and realisations expressed as annualised

quarter-on-quarter growth rates, ensuring comparability across forecasts and realisations.
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C.4 Additional charts and tables for information effects

Figure C.11: ALESSI ET AL. (2010) TEST FOR THE NUMBER OF FACTORS

T .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Notes: The figure reports the test proposed by Alessi et al. (2010). It plots r:% as a function of the parameter
¢, which represents the penalisation term for the information criterion used to determine the number of factors.
The second stability interval, where S, equals zero, corresponds to rﬁv = 4, indicating the presence of four

statistically significant factors.
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Table C.11: INFORMATION EFFECTS ON MARKET SURPRISES I (OLS posT LASSO)

FF1 FF2 FF3 FF4 FF5 FF6 ED1 ED2 ED3 ED4
RGDP;_g 0.008* 0.005 0.004 0.007%  0.008%  0.011***  0.006  0.010%**  0.009%*  0.008*
(0.003)  (0.004)  (0.003)  (0.004)  (0.003)  (0.003)  (0.004)  (0.004)  (0.005)  (0.005)
RGDP,_; -0.005
(0.004)
PGDP,_; -0.006  -0.009*
(0.004)  (0.006)
UNEMP,_o  0.003
(0.002)
AUNEMP;,_y  0.027%%*
(0.017)
RGDP;,_, 0.003 0.006 0.002 0.007 0.002 0.006 0.005
(0.005)  (0.005)  (0.005) (0.006)  (0.006)  (0.007)  (0.007)
PGDPj,_; -0.010%%*
(0.008)
ARGDPj,__, -0.006**
(0.003)
ARGDPj_; 0.008* 0.012%%%  0.010%**  0.010%**
(0.007) (0.008)  (0.009)  (0.009)
APGDP;,_o 0.010%**
(0.008)
ARGDP;,_ 0.006 0.007*
(0.006)  (0.006)
Constant ~ -0.017%%% _0.011%%% -0.032%%% -0.010%%* -0.030%%* -0.037%%% -0.041%%% -0.040%** -0.045%%* -0.042%%*
(0.014)  (0.017)  (0.011)  (0.018)  (0.009)  (0.009)  (0.014)  (0.013)  (0.014)  (0.014)
R2 0.078 0.058 0.060 0.087 0.051 0.070 0.089 0.136 0.148 0.130
F 2.699 2.940 4.278 3.305 8.220 13.575 4.624 4.713 5.669 4.850
P-value 0.022 0.034 0.015 0.007 0.005 0.000 0.011 0.001 0.000 0.001
N 243 243 243 243 243 243 243 243 243 243

Notes: This table presents the results of the information effect regressions for short-term interest rates
(FF1-FF6) and Eurodollar futures (ED1-ED4). The dependent variables are the monetary surprises, while the
explanatory variables include Greenbook forecasts. The regressors have been selected by LASSO and the
table presents OLS regressions post LASSO. Sample goes from 1991m7 to 2019m6.
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Table C.11: INFORMATION EFFECTS ON MARKET SURPRISES II (OLS posT LASSO)

TRE3M  TRE6M TRE2 TRES TREL0 TRE30 SP500
RGDP_q 0.005%*  0.006%%*  0.008%*  0.009%** 0.005 0.004
(0.002) (0.002) (0.003) (0.003) (0.004) (0.003)
PGDPj_; -0.004
(0.005)
UNEMP,,_o 0.002*
(0.001)
AUNEMP,_,  0.033*
(0.017)
RGDPj_; 0.002
(0.005)
ARGDP},_; 0.010 0.007
(0.007) (0.008)
ARGDP}_, 0.018* 0.020%%  0.026%%*
(0.011) (0.013) (0.009)
RGDPj—_; 0.003 0.001
(0.002) (0.002)
RGDP;,_3 0.004 0.004
(0.004) (0.003)
PGDP,__; 0.008** 0.005
(0.004) (0.003)
ARGDP;,_g 0.007
(0.005)
Constant 20.025  -0.022%FF  _0.028%%  -0.022%%%  -0.046%*  -0.031* 0.014
(0.017) (0.006) (0.011) (0.008) (0.020) (0.016)  (0.037)
R2 0.051 0.041 0.099 0.127 0.251 0.194 0.000
F 2.596 8.017 7.348 6.177 2.233 2.278 0.000
P-value 0.037 0.005 0.000 0.000 0.021 0.029 .
N 243 243 243 243 243 243 243

Notes: This table presents the results of the information effect regressions for treasury yields (TRE3M-
TRE30Y) and Stock Market (SP500). The dependent variables are the monetary surprises, while the
explanatory variables include Greenbook forecasts selected by LASSO. The table presents OLS regression
post LASSO. Sample goes from 1991m7 to 2019m6 (availability of Greenbook).
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Table C.11: INFORMATION EFFECTS ON RAW IDENTIFIED MONETARY POLICY FACTORS

Conventional MP (F1) Shock to Rule (F2) QE/QT (F3) Forward Guidance (F4)

RGDPj—g 0.073 0.026
(0.073) (0.068)
RGDPj—, 0.054
(0.079)
ARGDP;,_; -0.083*
(0.043)
A RGDPj—o -0.146%** 0.304 -0.019
(0.051) (0.219) (0.017)
RGDP),__, 0.068*
(0.035)
RGDP),_s 0.066
(0.075)
PGDP),__, 0.118*
(0.067)
A gRGDP,_, 0.123 0.016
(0.084) (0.011)
gPGDP,_, 0.008
(0.008)
gPGDP, _, 0.028
(0.025)
UNEMP},_ 0.005
(0.005)
ARGDPy—_4 0.010
(0.009)
APGDP;,__, -0.012
(0.014)
APGDP;,_, -0.022
(0.017)
A UNEMPj,__, -0.173
(0.115)
AUNEMP),_, 0.102
(0.072)
Constant -0.295* -0.014 -0.605* -0.102
(0.161) (0.020) (0.342) (0.063)
R2 0.041 0.091 0.113 0.052
F-statistic 2.813 10.793 1.378 1.356
P-value 0.062 0.000 0.224 0.202
N 243 243 243 243

Notes: This table presents the information effect regressions for the raw monetary policy factors. The
dependent variables are monetary policy factors (F1-F4), while the regressors include Greenbook forecasts.
Sample spans from 1991m7 to 2019m6.
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C.5 Robustness — IRF's different samples

Figure C.12: CONVENTIONAL MONETARY POLICY — DIFFERENT SAMPLES
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Notes: The figure reports the impulse response functions (IRFs) to a conventional monetary policy shock

estimated over different starting periods of the sample. We also report, in orange, the results if we run the

BVAR up to the financial crisis. The shock is identified with the conventional mp informationally robust

factor, and normalised to induce a 100 basis point increase in the 1-Year Treasury rate. The grey shaded

areas represent 90 percent coverage bands from the baseline specification.
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Figure C.13: SHOCK TO THE RULE’S PARAMETERS — DIFFERENT SAMPLES (INFORMATION
CORRECTION)
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Notes: This figure presents the IRFs for a shock to the rule’s parameters, over different starting periods of
the sample. We also report, in orange, the results if we run the BVAR up to the financial crisis. The shock is
normalised to induce a 100 basis point increase in the 1-Year Treasury rate. Grey shaded areas indicate 90

percent coverage bands from the baseline specification.
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C.6 Comparison of different information corrections

Figure C.14: COMPARISON OF INFORMATION CORRECTIONS CONVENTIONAL MP SHOCK
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Notes: The figure compares the IRF's for a conventional monetary policy shock using two different methods
for information correction. The dark blue line corresponds to the correction applied to market surprises, while

the light blue line represents the correction applied directly to the extracted factors.
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Figure C.15: COMPARISON OF INFORMATION CORRECTIONS SHOCK TO THE RULE’S PA-
RAMETERS
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Notes: The figure compares the IRFs for a shock to the rule’s parameters using two different information
correction methods. The dark blue line represents the correction applied to market surprises, while the light

blue line represents the correction applied to the extracted factors.
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