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A Modelling policy shocks and shocks to the rule

A.1 Nonlinear and linear policy rules

Let us consider a generic nonlinear Taylor rule, following Woodford (2003):

Rt = φ

(
Πt

Π∗t
; νt

)
, (1)

where Rt is the gross nominal interest rate, and the function φ indicates the rule used by the

central bank to set its policy rate. φ(·; νt) is a bounded-below, non-decreasing function for

each possible value of the shifter νt, while Πt ≡ Pt/Pt−1 is the gross inflation rate and Π∗t

is a, possibly, time-varying target rate.1 νt captures shifts in the central bank’s rule – i.e.

variations in policy, or in its implementation –, distinct from changes in the inflation target

itself.

A.1.1 A standard linearisation

The standard log-linearisation of Eq. (1) is obtained by first defining rt ≡ logRt, πt ≡ log Πt,

and π∗t ≡ log Π∗t , and then considering a first-order Taylor expansion of Eq. (1) at the point

(Πt = Π∗t = 1; νt = 0). This corresponds to a Taylor expansion around a zero-inflation steady

state.

We can then write

Rt =φ

(
Πt

Π∗t
; νt

) ∣∣∣∣
Πt=1;Π∗t=1;νt=0

+
∂φ (Πt/Π

∗
t ; νt)

∂ (Πt/Π∗t )

∣∣∣∣
Πt=1;Π∗t=1;νt=0

(
Πt

Π∗t
− 1

)
+
∂φ (Πt/Π

∗
t ; νt)

∂νt

∣∣∣∣
Πt
Π∗t

=1;νt=0

νt +O(2),

1In general, φ(·, ·) is a function capturing the nonlinear behaviour of the policy away from the steady
state where a small perturbation approximation is not accurate, or around the zero or effective lower bound
where its non-negative (or bounded-below) nature is visible.
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and by employing the definitions above, we get

ert = φ0,t +
∂φ (Πt/Π

∗
t ; νt)

∂ (Πt/Π∗t )

∣∣∣∣
Πt=1;Π∗t=1;νt=0

(
eπt−π

∗ − 1
)

+
∂φ (Πt/Π

∗
t ; νt)

∂νt

∣∣∣∣
Πt=1;Π∗t=1;νt=0

νt +O(2),

We can now proceed with a standard expansion to the first-order to obtain

1 + rt = φ0,t +
∂φ (Πt/Π

∗
t ; νt)

∂ (Πt/Π∗t )

∣∣∣∣
Πt=1;Π∗t=1;νt=0

(πt − π∗t ) +
∂φ (Πt/Π

∗
t ; νt)

∂νt

∣∣∣∣
Πt=1;Π∗t=1;νt=0

νt +O(2),

and by defining the following parameters

r∗ ≡ φ0,t − 1 ≡ φ

(
Πt

Π∗t
; νt

) ∣∣∣∣
Πt=1;Π∗t=1;νt=0

− 1,

φ ≡ ∂φ (Πt/Π
∗
t ; νt)

∂ (Πt/Π∗t )

∣∣∣∣
Πt=1;Π∗t=1;νt=0

,

σmp =
∂φ (Πt/Π

∗
t ; νt)

∂νt

∣∣∣∣
Πt=1;Π∗t=1;νt=0

,

we obtain the standard linear Taylor rule

rt = r∗ + φ(πt − π∗t ) + σmpν
mp
t +O(2). (2)

A few key observations are worth noting. First, ν, which captures shifts in the central

bank’s rule – i.e. the central bank becoming more hawkish or more dovish – in the standard

approach is the source of monetary policy shocks. Second a shock to the target, depending

on whether it is permanent or temporary, would either affect r∗, or manifest as a monetary

policy shock. To obtain a Taylor rule with a time-varying response parameter to inflation, we

need to take a slightly different expansion.
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A.1.2 A linearised Taylor rule with a time varying parameter

Let us now consider a first-order log-linear approximation at a different value of the policy

shifter, i.e. νt = ν̄t. In particular, we want to consider this parameter as

νt = ν̄t + νmpt ,

where ν̄t is persistent component – similar to a random walk, to fix ideas –, while νmpt is a

transitory component.

As was done before, let us define rt ≡ logRt, πt ≡ log Πt, and π∗t ≡ log Π∗t , but now we

take a first-order Taylor expansion of Eq. (1) with respect to the point (Πt = Π∗t ; νt = ν̄t). In

doing so we assume that νt is stable around the possibly time-varying steady state ν̄t, which

captures persistent changes to the rule over time.2

Following similar steps to those taken before

Rt =φ

(
Πt

Π∗t
; νt

) ∣∣∣∣
Πt
Π∗t

=1;νt=ν̄t

+
∂φ (Πt/Π

∗
t ; νt)

∂ (Πt/Π∗t )

∣∣∣∣
Πt
Π∗t

=1;νt=ν̄t

(
Πt

Π∗t
− 1

)

+
∂φ (Πt/Π

∗
t ; νt)

∂νt

∣∣∣∣
Πt
Π∗t

=1;νt=ν̄t

(νt − ν̄t) +O(2)

ert = φ0,t +
∂φ (Πt/Π

∗
t ; νt)

∂ (Πt/Π∗t )

∣∣∣∣
1;ν̄t

(
eπt−π

∗ − 1
)

+
∂φ (Πt/Π

∗
t ; νt)

∂νt

∣∣∣∣
1;ν̄t

(νt − ν̄t) +O(2)

1 + rt = φ0,t +
∂φ (Πt/Π

∗
t ; νt)

∂ (Πt/Π∗t )

∣∣∣∣
1;ν̄t

(πt − π∗t ) +
∂φ (Πt/Π

∗
t ; νt)

∂νt

∣∣∣∣
1;ν̄t

(νt − ν̄t) +O(2),

and defining the following time-varying quantities

r∗t ≡ φ0,t − 1 ≡ φ

(
Πt

Π∗t
; νt

) ∣∣∣∣
Πt
Π∗t

=1;νt=ν̄t

− 1,

2This expansion necessarily assumes that the exogenous variables νt and Πt remain for a long time within
the neighbourhood of what can be thought of as their steady-state values.
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φt ≡
∂φ (Πt/Π

∗
t ; νt)

∂ (Πt/Π∗t )

∣∣∣∣
1;ν̄t

, σmpt =
∂φ (Πt/Π

∗
t ; νt)

∂νt

∣∣∣∣
1;ν̄t

,

we obtain a Taylor rule, with time-varying coefficients, i.e.3

rt = r∗t + φt(πt − π∗t ) + σmpt νmpt +O(2), (3)

where r∗t can be thought of as the nominal equilibrium rate, and φt is the elasticity of the

policy rule with respect to deviations of inflation from the target.4

Let us make three related remarks. First, the time variations in the coefficients of the

Taylor rule depends on the potential time variation due to νt, which potentially affects all

the parameters, and that has been modelled as the sum of a persistent and a non-persistent

component, i.e. νt = ν̄t+νmpt . Second, for the log-linear expansion to be valid it has to be that

the rule is relatively stable and the changes are not ‘too large’ otherwise the linear expansion

around the time-varying steady state could be not valid and second order terms could be

as large as or larger than first-order terms.5 Third, and as a consequence, the time-varying

nature of the coefficient needs a specification of the law of motion to assess the expansion

since all terms with time-varying coefficients are potentially containing sums of first and

second order terms.

We need now to focus on the role of ν̄t which we have been thinking of as the persistent

part of the parameter characterising variations in policy or its implementation. Given the

relative stability of the US monetary policy, we can think of it as a stochastic parameter

3The time-variation that has been captured through νt does not need to occur simultaneously in all the
parameters of the Taylor rule and will depend on the nature of φ and the dimension of νt.

4The equation can be rewritten as
rt = r̄t + φtπt +O(2),

where r̄ ≡ r∗t −φtπ∗
t +σmpt νmpt is a measure of the total exogenous shift in the central bank’s reaction function.

5The inclusion of the random disturbances gives a log-linear (first-order Taylor series) approximation to
that solution, accurate up to a residual of order O(||ξ||2) where ||ξ|| indexes the bounds on a given disturbance
process ξ.
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evolving as a bounded random walk (see, for example, Nicolau, 2002).6 This assumption is in

line with the intuition of a drift in the Taylor parameter, proposed by Bauer and Swanson

(2023a,b).

This observation allows us to consider a further expansion in νt around what we can think

of the central point of the bounded random walk. If the area in which the process behaves

like a random walk is not ‘too large’, then a Taylor expansion can provide an approximation

to the policy rule. Let us focus on the inflation parameter of the Taylor rule and consider an

expansion at the centre of the bounded area of the bounded random walk process, ν̄, i.e.

φt = φt

∣∣∣∣
ν̄t=ν̄

+
∂φt
∂ν̄t

∣∣∣∣
ν̄t=ν̄

(ν̄t − ν̄) +O(2), (5)

=
∂φ (Πt/Π

∗
t ; νt)

∂ (Πt/Π∗t )

∣∣∣∣
1;ν̄

+
∂2φ (Πt/Π

∗
t ; νt)

∂ (Πt/Π∗t ) ∂ν̄t

∣∣∣∣
1;ν̄

(ν̄t − ν̄) +O(2) (6)

≡ φ+ φ̂t +O(2) (7)

The expansion shows that we are now considering second-order terms, going beyond a first-

order expansion. A similar expansion can be considered for the other time-varying parameters

of the Taylor rule in Eq. (3). However, for the sake of the exposition, let us focus on the φ

parameter only.

Following the described steps, we obtain:

rt = r∗ + (φ+ φ̂t)(πt − π∗) + σmpν
mp
t +O(2), (8)

where O(2) now represents the remainder term which still contains second order terms, i.e.

6A possible way to write a bounded random walk process is the following, proposed by Nicolau (2002)

ν̄t = ν̄t−1 + eκ
(
e−δ(ν̄t−1−ν̄) − eβ(ν̄t−1−ν̄)

)
+ σεεt, (4)

for δ ≥ 0, β ≥ 0, κ > 0 where {εt} is a sequence of independent and identically distributed (i.i.d.) random
variables with E[εt] = 0 and Var[εt] = 1. The parameters κ, δ, and β are selected so that when νt is close to
ν̄ it behaves as a random walk, while when it moves significantly away from it, it will be reversion effects
that pull it toward ν̄ again. A bounded random walk can be indistinguishable from a random walk, although
stochastically bounded by an upper and lower finite limit.
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∼ νmp,2t , (πt − π∗t )2, and (πt − π∗t )ν
mp
t , albeit the expansion now features some terms beyond

the first order, i.e. φ̂t(πt − π).

Let us recap. Starting from a general nonlinear policy rule we derived a linearised Taylor

with an inflation coefficient varying through time and with a shift behaving like a random walk,

but effectively covering a bounded space (and hence being a stationary and ergodic process).

It is important to stress that in doing so we have to consider second order terms beyond the

standard first-order log-linearisation of the Taylor expansion. Other second-order terms, of

the same magnitude, may have been dropped in the expansion. From the point of view of the

agents in the model, the random walk nature of the process driving the time-change in the

rule parameters implies the need to forecast using the parameters from the last period.

A.2 A simple term structure model

Let us now consider, following Ellingsen and Soderstrom (2001), a simple affine term structure

model of the type discussed in Svensson (1997, 1999), and based on the expectation hypothesis

that does not model term premium.7

The economy is described by a set of linear equations

πt = πt−1 + ιyt−1 + σπu
π
t , (9)

yt = β̂yt−1 − δ(rt−1 − Et−1[πt]) + σyu
y
t , (10)

rt ≡ i
(0)
t = (φ+ φt)πt + (ω + ωt)yt + σmpν

mp
t , (11)

i
(n)
t =

1

n

n−1∑
i=0

Et[rt+i] + ξ
(n)
t , (12)

νmpt = ζνmpt−1 + umpt , (13)

where all the variables are considered in deviation from their steady state. The model features

an accelerationist Phillips curve in which the change in the inflation rate is positively related

7We refer to Ellingsen and Soderstrom (2001) for a discussion of some of the standard results reported in
this section.
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to the previous period’s output gap (Eq. 9), with ι > 0, and uπt representing an i.i.d. supply

shock with mean zero. The output gap is mean reverting and negatively related to the ex ante

real short interest rate (Eq. 10). By substituting expectations of Eq. (9) in Eq. (10), one gets

yt = βyt−1 − δ(rt−1 − πt−1) + σyu
y
t , (14)

for β ≡ β̂ + δι. The short term interest rate is set according to a Taylor rule that responds to

inflation and output gap (Eq. 16), and possibly with time-varying parameters as discussed in

the previous section. The yield curve is specified as following the expectation hypothesis, and

the n-periods ahead interest rate given by the expected path of the short term interest rate

plus an exogenous term premium, ξ
(n)
t (Eq. 12). Finally, the monetary policy disturbance,

νmpt , follows an autoregressive process of order one (Eq. 13).

A.2.1 The central bank’s problem

As discussed in Ellingsen and Soderstrom (2001), the policy equation can be obtained from

the problem of a central bank trying to minimise a loss function

L = Et

∞∑
i=0

ϑi
1

2

(
π2
t+s + λty

2
t+s

)
, (15)

where the parameter λt is the weight of output stabilisation relative to inflation stabilisation,

which in our setting may change over time. The solution of this programme for the central

bank delivers a linear policy rule

rt = φπt + ωyt + σmpν
mp
t (16)

with coefficients

φ = 1 +
ιϑk

δ(λt + ι2ϑk)
, ω =

β

δ
+ ι(φ− 1), (17)

for k > 1 a constant.
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How do the parameters change for a change to λt? Let us consider a first order expansion

at a given value of λ, and define

φt ≡
∂φ

∂λt
(λt − λ) = − ιϑk

δ(λt + ι2ϑk)2
(λt − λ) (18)

ωt ≡
∂ω

∂λt
(λt − λ) = ι

∂φ

∂λt
(λt − λ) = −ι2 ϑk

δ(λt + ι2ϑk)2
(λt − λ) (19)

If we assume that λt evolves in a neighbourhood of λ as a bounded random walk, then φt and

ωt inherit the bounded random walk dynamics

φt = φt−1 + σφu
φ
t , (20)

ωt = ωt−1 + ισφu
φ
t . (21)

In the following discussion of this model, we will focus on the solution of the model for

φt = ωt = 0 and consider how a shift to the policy rule parameters, as well as different shocks

affect the yield curve.

A.2.2 The yield curve in the economy

To find a solution for the yield curve, we can start by taking expectations of the policy rate,

in Eq. (12), i periods ahead:

Et[rt+i] = φEt[πt+i] + ωEt[yt+i] + σmpEt[ν
mp
t+i] (22)
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By employing Eq. (9), (16) and (14), we obtain:

Et[yt+i] = βEt[yt+i−1]− δ(Et[rt+i−1]− Et[πt+i−1])

= −δ(φ− 1)Et[πt+i−1] + (β − δω)Et[yt+i−1]− δEt[σmpνmpt+i−1]

= −δ(φ− 1)Et[πt+i−1]− δι(φ− 1)Et[yt+i−1]− δEt[σmpνmpt+i−1]

= −δ(φ− 1)Et[πt+i]− δEt[σmpνmpt+i−1] (23)

Likewise, the expected future inflation rate at period t+ i:

Et[πt+i] = Et[πt+i−1] + ιEt[yt+i−1] = (1− ιδ(φ− 1))Et[πt+i−1]− διEt[σmpνmpt+i−2]

= (1− ιδ(φ− 1))2Et[πt+i−2]− (1− ιδ(φ− 1))διEt[σmpν
mp
t+i−3]− διEt[σmpνmpt+i−2]

= (1− ιδ(φ− 1))i−1[πt + ιyt]− δι
[ i−2∑
j=0

(1− ιδ(φ− 1))jζ i−2−j]σmpνmpt
= (1− ιδ(φ− 1))i−1[πt + ιyt]− δι

ζ i−1 − [1− ιδ(φ− 1)]i−1

ζ − [1− ιδ(φ− 1)]
σmpν

mp
t , (24)

where, in the second line, we observe that

Et[ν
mp
t+i] = ζEt[ν

mp
t+i−1] = ... = ζ iνmpt . (25)

The condition

|1− ιδ(φ− 1)| < 1,

is needed to get a finite sum in the above summations.

We can now substitute Eq. (24) into Eq. (23) to obtain

Et[yt+i] = −δ(φ− 1)

[
(1− ιδ(φ− 1))i−1[πt + ιyt]

− διζ
i−1 − [1− ιδ(φ− 1)]i−1

ζ − [1− ιδ(φ− 1)]
σmpν

mp
t

]
− δζ i−1σmpν

mp
t . (26)
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By substituting Eq. (24) and Eq. (26) in Eq. (22), we obtain the following expression

Et[rt+i] = [φ− ωδ(φ− 1)]

[
(1− ιδ(φ− 1))i−1[πt + ιyt]

− διζ
i−1 − [1− ιδ(φ− 1)]i−1

ζ − [1− ιδ(φ− 1)]
σmpν

mp
t

]
+ (ζ i − ωδζ i−1)σmpν

mp
t . (27)

We can now observe that:

n−1∑
i=1

Et[rt+i] = [φ− ωδ(φ− 1)]

[ n−1∑
i=1

(1− ιδ(φ− 1))i−1

]
(πt + ιyt)

− [φ− ωδ(φ− 1)]δι

ζ − [1− ιδ(φ− 1)]

[ n−1∑
i=1

(ζ i−1 − [1− ιδ(φ− 1)]i−1)

]
σmpν

mp
t

+

[ n−1∑
i=1

(ζ i − ωδζ i−1)

]
σmpν

mp
t (28)

and

n−1∑
i=1

(1− ιδ(φ− 1))i−1 =
n−2∑
i=0

(1− ιδ(φ− 1))i =
1− (1− ιδ(φ− 1))n−2+1

ιδ(φ− 1)
=

1− (1− ιδ(φ− 1))n−1

ιδ(φ− 1)

n−1∑
i=1

(ζ i−1 − [1− ιδ(φ− 1)]i−1) =
n−2∑
i=0

(ζ i − [1− ιδ(φ− 1)]i) =
1− ζn−1

1− ζ
− 1− (1− ιδ(φ− 1))n−1

ιδ(φ− 1)

n−1∑
i=1

(ζ i − ωδζ i−1) = ζ
1− ζn−1

1− ζ
− ωδ1− ζn−1

1− ζ
= (ζ − ωδ)1− ζn−1

1− ζ

Thus, we obtain:

n−1∑
i=1

Et[rt+i] =
[φ− ωδ(φ− 1)]

[
1− (1− ιδ(φ− 1))n−1]
ιδ(φ− 1)

(πt + ιyt)+

− [φ− ωδ(φ− 1)]δι

ζ − [1− ιδ(φ− 1)]

[
1− ζn−1

1− ζ
− 1− [1− ιδ(φ− 1)]n−1

ιδ(φ− 1)

]
σmpν

mp
t

+
(ζ − ωδ)(1− ζn−1)

1− ζ
σmpν

mp
t . (29)

Hence, from the term structure in Eq. (12), we obtain an analytical solution for bonds at
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different maturities, i.e.

i
(n)
t =

1

n

{
φπt + ωyt + σmpν

mp
t +

[φ− ωδ(φ− 1)]
[
1− (1− ιδ(φ− 1))n−1]
ιδ(φ− 1)

(πt + ιyt)

− (φ− ωδ(φ− 1)) δι

ζ − (1− ιδ(φ− 1))

[
1− ζn−1

1− ζ
− 1− (1− ιδ(φ− 1))n−1

ιδ(φ− 1)

]
σmpν

mp
t

+
(ζ − ωδ)(1− ζn−1)

1− ζ
σmpν

mp
t

}
+ ξ

(n)
t , (30)

The yield curve can be written in the standard form of an affine model as

i
(n)
t = an + bπnπt + bynyt + cnν

mp
t + ξ

(n)
t , (31)

with an ≡ 0 and

bπn ≡
1

n

(
φ+

(φ− ωδ(φ− 1))
(
1− (1− ιδ(φ− 1))n−1)

ιδ(φ− 1)

)
(32)

byn ≡
1

n

(
ω + ι

(φ− ωδ(φ− 1))
(
1− (1− ιδ(φ− 1))n−1)

ιδ(φ− 1)

)
(33)

cn ≡
σmp
n

{
1− (φ− ωδ(φ− 1)) δι

ζ − (1− ιδ(φ− 1))

(
1− ζn−1

1− ζ
− 1− (1− ιδ(φ− 1))n−1

ιδ(φ− 1)

)

+
(ζ − ωδ)(1− ζn−1)

1− ζ

} (34)

A.2.3 The impact of a policy parameter shift

The yield change triggered by the monetary policy announcement, conditional on a shock to

the policy parameters, uφt , can be written as

∆[t̄−
¯
t]i

(n)
t =

∂i
(n)
t

∂φt

φt

∂uφt
= σφ

∂i
(n)
t

∂φt
uφt , (35)

where ∆[t̄−
¯
t] indicates the difference between the yields before and after the announcement.

To compute the changes of the yields triggered by a change in the time-varying part of the
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policy parameter, we can consider the model with constant φ and take a derivative in that

parameter.

To compute the derivative of the rates with respect to a change in the parameter of the

Taylor rule φ, i.e.
∂i

(n)
t

∂φ
, let us consider Eq. (30) and set the monetary policy shock to zero.

At n = 1, the policy rate responds as

∂i
(1)
t

∂φ
= πt + ιyt,

and hence the impact is positive and equal to one. For n ≥ 2, we need a bit more work, let

us focus on the coefficient in front of π + ιyt, which we can rewrite as

[φ− ωδ(φ− 1)]
[
1− (1− ιδ(φ− 1))n−1]
ιδ(φ− 1)

=
T1(φ)T2(φ)

T3(φ)
. (36)

where we define

T1(φ) ≡ [φ− ωδ(φ− 1)] , T2(φ) ≡
[
1− (1− ιδ(φ− 1))n−1] , T3(φ) ≡ ιδ(φ− 1). (37)

Using the standard derivation rules

d

dφ

(
T1(φ)T2(φ)

T3(φ)

)
=
T3(φ) d

dφ
[T1(φ)T2(φ)]− T1(φ)T2(φ)dT3(φ)

dφ

T3(φ)2

=
ιδ(φ− 1)

[
(1− ιδ(φ− 1)− ωδ)T2(φ) + T1(φ)(n− 1) (1− ιδ(φ− 1))n−2 ιδ

]
(ιδ(φ− 1))2

− T1(φ)T2(φ)ιδ

(ιδ(φ− 1))2 ,

where we used

dT1(φ)

dφ
= 1− ιδ(φ− 1)− ωδ, dT2(φ)

dφ
= (n− 1) (1− ιδ(φ− 1))n−2 ιδ,

dT3(φ)

dφ
= ιδ,

(38)
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and the fact that ∂ω
∂φ

= ι. As observed above, the derivative of the term φπt + ωyt in φ is

equal to πt + ιyt. The derivative of the rates at different maturities is therefore

∂i
(n)
t

∂φ
=

1

n

{
1 +

1

ιδ(φ− 1)

[
(1− ιδ(φ− 1)− ωδ)T2(φ)

+T1(φ)(n− 1) (1− ιδ(φ− 1))n−2 ιδ − T1(φ)T2(φ)

φ− 1

]}
(πt + ιyt). (39)

For n large, since (1− ιδ(φ− 1)) < 1, we get T2 ∼ 1,

T1(φ)(n− 1) (1− ιδ(φ− 1))n−2 ∼ 0,

and

T1(φ)T2(φ) = [φ− ωδ(φ− 1)]
[
1− (1− ιδ(φ− 1))n−1] ∼ [φ− ωδ(φ− 1)] ,

hence

∂i
(n)
t

∂φ
∼ 1

n

{
1 +

1

ιδ(φ− 1)

[
(1− ιδ(φ− 1)− ωδ)− φ− ωδ(φ− 1)

φ− 1

]}
(πt + ιyt)

=
1

n

{
1 +

1

ιδ(φ− 1)2

[
(φ− 1)− ιδ(φ− 1)2 − φ

]}
(πt + ιyt)

= − 1

n

{
1

ιδ(φ− 1)2

}
(πt + ιyt) (40)

Thus, conditional on positive values of inflation and output at time t, a shift in φ causes

short maturities to rise and longer maturities to decrease. This results and the following

proposition are similar to what derived by Ellingsen and Soderstrom (2001).

Lemma 1 (Shock to the parameters of the policy rule). If a policy decision of the

central bank reveals a change in the preferences of the central bank, interest rates on bonds

of sufficiently long maturity move in the opposite direction to the unexpected change in the

policy rate, i.e. an unexpectedly high central-bank rate tilts the yield curve clockwise, while an

unexpectedly low rate tilts it counterclockwise.
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A.2.4 The impact of information

Following Ellingsen and Soderstrom (2001), let us consider a situation in which agents are

not perfectly informed and the effect of information conveyed by a policy action, i.e. agents

learning about a demand and/or a supply shock via the central bank’s decision. The yield

change triggered by information about the shocks can be written as

∆[t̄−
¯
t]i

(n)
t =

∂i
(n)
t

∂uπt
uπt +

∂i
(n)
t

∂uyt
uyt . (41)

Differentiating i
(n)
t in Eq. (30) with respect to uπt , one obtains

∂i
(n)
t

∂uπt
=
σπ
n

{
φ+

[φ− ωδ(φ− 1)]
[
1− (1− ιδ(φ− 1))n−1]
ιδ(φ− 1)

}
, (42)

while taking a derivative in the demand shock, uyt , one finds

∂i
(n)
t

∂uyt
=
σy
n

{
ω + ι

[φ− ωδ(φ− 1)]
[
1− (1− ιδ(φ− 1))n−1]
ιδ(φ− 1)

}
. (43)

Since φ > 1, and (1− ιδ(φ− 1)) < 1, we can conclude that an information shock would lift

all the maturities with the magnitude of the effects decreasing with n−1.

Lemma 2 (Information effects). If a policy decision of the central bank transmits infor-

mation about either a supply or a demand shock, market interest rates will comove with the

policy rate change at all maturities, with the magnitude of the effects decreasing over the

maturities at rate n−1.

A.2.5 The impact of monetary policy shock

The effect of a monetary policy shock on the yield curve can be written as

∆[t̄−
¯
t]i

(n)
t =

∂i
(n)
t

∂νmpt
umpt , (44)
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where the impact of a monetary policy disturbance is given by

∂i
(n)
t

∂νmpt
=
σmp
n

{
1− [φ− ωδ(φ− 1)]δι

ζ − (1− ι δ(φ− 1))

[
1− ζn−1

1− ζ

−1− (1− ι δ(φ− 1))n−1

ιδ(φ− 1)

]
+

(ζ − ωδ)(1− ζn−1)

1− ζ

}
(45)

On the policy rate, the effect of the shock is positive and equal to σmp, i.e.

∂i
(1)
t

∂νmpt
= σmp. (46)

For n large, since 1− ι δ(φ− 1) < 1 and |ζ| < 1, the leading terms are

∂i
(n)
t

∂νmpt
∼ σmp

n

{
1− [φ− ωδ(φ− 1)]δι

ζ − a

[
1

1− ζ
− 1

ιδ(φ− 1)

]
+
ζ − ωδ
1− ζ

}
=
σmp
n

[
1− 1

1− ζ

(
φ

φ− 1
− ζ
)]

= −σmp
n

1

(φ− 1)(1− ζ)
, (47)

which is always negative since φ > 1, and goes to zero for n large.

To summarise: (i) the response to a monetary policy shock in this model goes to zero

with n−1, (ii) the impact of a positive monetary policy shock is positive at short maturities to

become negative at long maturities.

Lemma 3 (Monetary policy shock). Following a monetary policy shock the interest rates

on bonds of sufficiently long maturity will move in the opposite direction to the monetary

policy shock and the movement of the short maturities. The magnitude of the effects declines

with the maturity of the bond, at rate n−1.

A.2.6 A discussion on the magnitude of the effects at the end of the curve

As we have seen the effects for both a monetary policy shock and a change to the rule,

conditionally on a demand or supply shock, are declining over the maturities and have

opposite in sign effect on shorter maturities and long maturities. However, the magnitude can
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be very different. The intuition for this remark is that a monetary policy shock is expected to

dissipate at business cycle maturities leaving the long end of the curve unaffected. Conversely,

a shift to the parameters of the policy rule can impress a stronger rotation on the long-end of

the curve.

The results reported above support this intuition, in fact, the impact of a shift to the rule

parameters onto yields with long maturities (i.e. for large n), conditional on a demand (or

supply shock) is

∆[t̄−
¯
t]i

(n)
t ∼ −

σφ
n

{
1

ιδ(φ− 1)2

}
uφt (σπu

π
t + ισy, u

y
t )

while for a monetary policy shock, we obtained

∆[t̄−
¯
t]i

(n)
t ∼ −

σmp
n

1

(φ− 1)(1− ζ)
umpt .

Hence conditionally on unit shocks (and unit variances), we need to compare

1

ιδ(φ− 1)2
vs.

1

(φ− 1)(1− ζ)
,

which for a standard range of the parameters gives ι, δ and (φ − 1) between zero and one.

Therefore while at longer maturities a monetary policy shock has effects of roughly an order

of magnitude 102 smaller than a shift to the rule parameters.

For the standard range of parameters, ι, δ and (φ− 1) lie between zero and one. Therefore,

at longer maturities, the effect of a monetary policy shock is approximately two orders of

magnitude (102) smaller than that of a shift in the rule parameters. Figure (A.1), plots the

impact of the different shocks, for a set of parameters similar to those used by Smith and

Taylor (2009). It also reports a monetary policy shock in the case in which the central bank

does not respond to the consequences of it own shock.

Lemma 4 (Magnitude of the effects at the long end of yield curve). At longer

maturities, the impact of a monetary policy shock on yields is significantly smaller than the
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Figure A.1: The reaction of the yield curve to shocks (model I)
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Notes: The figure compares the impact on the term structure of interest rates resulting from a shift in the
policy rule (blue), a monetary policy shock (orange when ζ = 0 and green when ζ = 0.5), and an information
shock (light red). The calibration follows Smith and Taylor (2009). In grey, the figure reports the term
structure’s reaction under the assumption that the central bank does not respond to the macroeconomic
consequences of its own monetary policy shock, which follows an AR(1) process with an autocorrelation
coefficient of 0.5, which follows an AR(1) process with an autocorrelation coefficient of 0.5. n = 120 are 120
quarters (i.e., 30 years).

impact of a shift in policy rule parameters. Specifically, for standard parameter values, the

effect of a monetary policy shock declines at a rate of approximately 102 times smaller than

that of a change in policy parameters.

A.3 Imperfect information and the yield curve

The model discussed in the previous section, following Ellingsen and Soderstrom (2001),

captures only the expectations component of interest rates without accounting for term

premium dynamics. Moreover, it does not explicitly model the information flow between

the central bank and market participants. In this section, we introduce a stylised imperfect

information framework that integrates the policy rule from the previous section into an affine

term structure model with a term premium, as in Smith and Taylor (2009).8

All the variables are considered in deviation from their steady state, and their dynamics

8As compared to the previous model, for sake of simplicity was consider a policy rule that only responds
to inflation. Results in Smith and Taylor (2009) show that the results on the response of the yield curve to
shocks extends to the case of a more general policy rule reacting to output gap, and hence this applies also to
our discussion.
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is described by the following set of equations

rt = (φ+ φ̂t)πt + σmpν
mp
t , (48)

νmpt = ζνmpt−1 + umpt (49)

φ̂t = φ̂t−1 + σφu
φ
t (50)

i
(n)
t = − 1

n
logP

(n)
t , (51)

P
(n+1)
t = Et

[
mt+1P

(n)
t+1

]
, (52)

mt+1 = e−rt−
1
2
λ2
t−λtuπt+1 , (53)

λt = −γ − ψπt, (54)

πt = απt−1 − δ(rt−1 − πt−1) + σπu
π
t . (55)

Eq. (48) represents the (linearised) monetary policy rule, where the short-term nominal

interest rate, rt, responds to inflation with a policy response coefficient φ+ φt > 1. Eq. (49)

models the transitory policy shock as an AR(1) process with coefficient 0 < ζ < 1, capturing

the policy inertia observed in the data. Eq. (51) defines the yield to maturity of a zero-coupon

bond with face value one, maturing in n periods, where P
(n)
t denotes the bond price at time t.

Eq. (52) states a no-arbitrage condition, requiring that the price of an n+ 1-period bond at

time t equals the expected present discounted value of an n-period bond at time t+ 1, given

the stochastic discount factor mt. Eq. (53) specifies the stochastic discount factor, adopting

its functional form from the affine term structure literature. Eq. (54) models the risk factor

as a combination of a constant risk premium, γ, and a time-varying risk premium, ψ, linked

to inflation fluctuations. Finally, Eq. (86) describes inflation dynamics as a function of the

lagged real interest rate and past inflation.

The model features three independent and identically distributed normal white noise

shocks: an inflation shock, a conventional monetary policy shock, and a policy rule shifter,

denoted as uit ∼ i.i.d. N (0, 1) for i ∈ (π,mp, φ).

Although we consider shifts in the Taylor rule parameter, we assume that both the central
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bank and private agents perceive it as fixed and known at any given time. Consequently, any

changes to the Taylor rule parameters are fully unanticipated and regarded as permanent,

aligning with the intuition proposed by Bauer and Swanson (2023a,b).

This model admits an affine structure for the yield curve:

i
(n)
t = an + bnπt + cnν

mp
t , (56)

P
(n)
t = eAn+Bnπt+Cnν

mp
t . (57)

with the following relationships:

an = −An
n
, bn = −Bn

n
, cn = −Cn

n
. (58)

A.3.1 Solution by the method of undetermined coefficients

We solve the model using the method of undetermined coefficients. For n = 1, where i
(1)
t = rt,

Eq. (48) yields

a1 = 0, A1 = 0, (59)

b1 = φ, B1 = −φ, (60)

c1 = σmp, C1 = −σmp. (61)
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From Eq. (52) one obtains

P
(n+1)
t = Et

[
mt+1P

(n)
t+1

]
= Et

[
e−rt−

1
2
λ2
t−λtuπt+1eAn+Bnπt+1+Cnν

mp
t+1

]
= Et

[
e−φπt−σmpν

mp
t −

1
2
λ2
t−λtuπt+1+An+Bnπt+1+Cnν

mp
t+1

]
= Et

[
e−φπt−σmpν

mp
t −

1
2
λ2
t−λtuπt+1+An+Bn(απt−δ(φπt+σmpνmpt −πt)+σπuπt+1)+Cn(ζνmpt +umpt+1)

]

= e−φπt−σmpν
mp
t −

1
2
λ2
t+An+Bn(απt−δ(φπt+σmpνmpt −πt))+ζCnν

mp
t Et

[
e−λtu

π
t+1+Bnσπuπt+1+Cnu

mp
t+1

]

= e−φπt+(ζCn−σmp)νmpt −
1
2
λ2
t+An+Bn(απt−δ(φπt+σmpνmpt −πt))+ 1

2(λ2
t+B

2
nσ

2
π+C2

n)−λtBnσπ

= e−φπt+(ζCn−(1+Bnδ))σmpν
mp
t +An+Bn(α+δ(1−φ))πt+

1
2(B2

nσ
2
π+C2

n)+Bnσπ(γ+ψπt)

= eAn+ 1
2(B2

nσ
2
π+C2

n)+Bnσπγ+(−φ+Bn(α+δ(1−φ)+σπψ))πt+(ζCn−(1−Bnδ))σmpνmpt

where the equalities are derived by sequentially substituting the no-arbitrage condition, Eq.

(53), Eq. (57), Eq. (48), and Eq. (86); then taking the expected value of the exponential of a

normally distributed variable, and finally using Eq. (54) before simplifying the expression

and factorising.

Matching coefficients with Eq. (57), one obtains the following set of recursive equations

for the coefficients:

An+1 = An +
1

2

(
B2
nσ

2
π + C2

n

)
+Bnσπγ (62)

Bn+1 = −φ+Bn(α + δ(1− φ) + σπψ) (63)

Cn+1 = ζCn − σmp(1 +Bnδ) (64)
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By using the initial conditions in (59)–(61), we can write:

Bn = −φ
n−1∑
i=0

(α + δ(1− φ) + σπψ)i (65)

bn =
φ

n

n−1∑
i=0

(α + δ(1− φ) + σπψ)i (66)

Substituting in the expression for Cn, we obtain

Cn = −σmp

[
ζn−1 +

n−1∑
j=1

ζn−1−j

(
1− δφ

j−1∑
i=0

(α + δ(1− φ) + σπψ)i
)]

(67)

cn =
σmp
n

[
ζn−1 +

n−1∑
j=1

ζn−1−j

(
1− δφ

j−1∑
i=0

(α + δ(1− φ) + σπψ)i
)]

(68)

Substituting in the equation for An, we obtain

An+1 = An + σπγBn +
1

2

(
σ2
πB

2
n + σ2

mp

n−1∑
j=1

ζj(1 + δBj)
2

)
, (69)

which can be solved iterating the difference equation.

The sum in Eq. (65) is finite under the condition

|α + δ(1− φ) + σπψ| < 1.

Restricting the parameter space for φ > 0, the condition implies that

φ > 1 +
α− 1 + σπψ

δ
. (70)

Thus, we assume that the random walk, in every period t, is bounded below by the term in

equation (70). We can now simplify the above expressions by defining

κ ≡ α + δ(1− φ) + σπψ,
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and using the standard formula for geometric sums, for |κ| < 1, to obtain

Bn = −φ1− κn

1− κ
, (71)

Cn = −σmp
[
ζn−1 +

1− ζn−1

1− ζ
− δφ

1− κ

(
1− ζn−1

1− ζ
− κκ

n−1 − ζn−1

κ− ζ

)]
, (72)

and

bn =
φ

n

1− κn

1− κ
, (73)

cn =
σmp
n

[
ζn−1 +

1− ζn−1

1− ζ
− δφ

1− κ

(
1− ζn−1

1− ζ
− κκ

n−1 − ζn−1

κ− ζ

)]
. (74)

Let us summarise these results in the following proposition.

Lemma 5 (Yield curve). The yield curve described by the model in Eq.s (48-86) is

i
(n)
t = an + bnπt + cnu

mp
t (75)

with coefficients of the disturbances given by

bn =
φ
∑n−1

i=1 κ
i

n
, cn =

σmp
(
1− δφ

∑n−2
i=0 κ

i
)

n
, (76)

for κ ≡ α + δ(1− φ) + σπψ, and |κ| < 1.

A.3.2 The impact of a policy parameter shift

We can now examine the derivative of bn with respect to a shock to φ at time t (i.e., uφt ).

This analysis quantifies the impact on bond yields of varying maturities when the central

bank adjusts its response to inflation beyond market expectations.

First, note that the geometric series in Eq. (65) is:

n−1∑
i=0

(α + δ(1− φ) + σπψ)i =
1− κn

1− κ
(77)
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Next, we differentiate bn with respect to uφt to capture a shift in φ:

∂bn

∂uφt
=
σφ
n

1− κn

1− κ
+
φ

n

(1− κ)(−nκn−1)− (1− κn)(−1)

(1− κ)2
(−δσφ) (78)

=
σφ
n

1

(1− κ)2
[nδφκn−1(1− κ)− (1− κn)(δφ+ κ− 1)]. (79)

This derivative is positive for small values of n and negative for large values, under the

assumption that

α + δ + σπψ > 1, (80)

a condition typically satisfied when inflation is persistent (i.e., α approaches 1) and ψ > 0.

Therefore, a key prediction of the model is that if a central bank becomes more aggressive in

responding to inflation, bond yields at short maturities increase, while those at longer maturi-

ties decrease, as in Smith and Taylor (2009). In Section A.4, we discuss the generalisation of

these results to a setting where the central bank responds to both inflation and output gap.

It is interesting to note that for large n,

∂bn

∂uφt
∼ −σφ

n

1

(1− κ)2
(δφ+ κ− 1). (81)

Lemma 6 (Shock to the parameter of the policy rule). If the parameter of the central

bank’s response to inflation changes, interest rates on bonds of sufficiently long maturity move

in the opposite direction to the change in the parameter and the short-term rates.

A.3.3 The impact of shocks to inflation

Let us first observe that the derivative of bn in n is

∂bn
∂n

=
∂

∂n

(
φ

n

1− κn

1− κ

)
= − 1

n

φ

1− κ

(
1− κn

n
+ κn log κ

)
< 0,
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hence, the yield curve response coefficient to inflation is always positive (since |bn| > 0 for all

n) and decreases over the horizons, approaching zero at a rate of n−1.

Lemma 7 (Response to inflation). The yield curve response coefficient to inflation is

always positive and decreases over the horizons, approaching zero at a rate of n−1.

A.3.4 Monetary policy shocks

The effect on the yield curve of a monetary policy shock is described by the coefficients cn in

Eq. (74), which can be rearranged as

cn =
σmp
n

[
ζn−1 + κ

κn−1 − ζn−1

κ− ζ
+

1− ζn−1

1− ζ

(
1− δφ

1− κ

)]
, (82)

Let first note that on impact (n = 1) the effect is positive and equal to c1 = σmp, while after

one period (n = 2) is equal to ζ. Since the first two terms in parentheses are positive for any

n, the sign of cn depends on the last term. If κ is sufficiently large, i.e.

κ > 1− δφ =⇒ α + δ + σπψ > 1,

then there will exist some n∗ for which cn becomes negative. Interestingly, it is the same

condition that holds for bn.

For large n, Eq. (74) behaves as

cn ∼
σmp
n

1

1− ζ

(
1− δφ

1− κ

)
= −σmp

n

1

1− κ
1

1− ζ
(δφ+ κ− 1) , (83)

which shows that the impact of the shock on the yield curve declines with n−1(1− ζ)−1.

Lemma 8 (Monetary policy shock). Following a monetary policy shock the interest rates

on bonds of sufficiently long maturity will move in the opposite direction to the monetary

policy shock and the movement of the short maturities. The magnitude of the effects declines

with the maturity of the bond, at rate n−1(1− ζ)−1.
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A.3.5 The magnitude of the effects at the end of the yield curve

Suppose ζ = 0 and observe that:

cn ∼ −
σmp
n

1

(1− κ)(1− ζ)
(δφ+ κ− 1) (84)

∂bn

∂uφt
∼ −σφ

n

1

(1− κ2)
(δφ+ κ− 1) (85)

Hence conditionally on unit shocks (and unit variances), the long run effects of a shock to

the rule as compared to a monetary policy shock are

1

(1− κ)2
vs.

1

1− κ
1

1− ζ
,

Thus, κ = α + δ(1 − φ) + σπψ > ζ, i.e. if the inflation persistence α is sufficiently larger

than the autocorrelation of the monetary policy shocks, then the effects of a shock to the

rule would impart a significant rotation to yield curve with its long end moving in opposite

direction to the short end, while the monetary policy shock would have negligible effects on

longer maturities.

Lemma 9 (Magnitude of the effects at the end of the yield curve). If the persistency

of inflation is sufficiently higher than the autocorrelation of a monetary policy shocks, then

at longer maturities, the impact of a monetary policy shock on yields is significantly smaller

than the impact of a shift in policy rule parameters.

A.3.6 Imperfect Information

We now embed the term structure model, in which the policy rule responds only to inflation,

in an environment characterised by imperfect information, following Miranda-Agrippino and

Ricco (2021) and Pirozhkova et al. (2024).
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Figure A.2: The information flow
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Notes: The figure presents the information flow in the economy. Agents do not observe directly the state of
the economy but receive noisy private signals, si,

¯
t at the beginning of time t which are used to update their

information set from the end of the previous period, i.e. Ii,t−1. The information set at the end of period t
contains the observed policy rate and the signal about the new policy parameter, φt̄.

The inflation process in the model is:

πt = απt−1 − δ(rt−1 − πt−1) + σπu
π
t ,

= απt−1 − δ((φ+ φ̂t−1)πt−1 + σmpu
mp
t−1 − πt−1) + σπu

π
t ,

= (α− δ(φ+ φ̂t−1 − 1))πt−1 − δσmpumpt−1 + σπu
π
t (86)

Each agent i in the economy do not directly observe πt, but receives a private noisy signal of

πt at the beginning of the time period t = [
¯
t, t̄] (see Figure A.2):

si,
¯
t = πt + νi,

¯
t , νi,

¯
t ∼ N (0, σn,ν) . (87)

Agent also form beliefs about the Taylor rule parameter, i.e. φ+ φ̂t−1, by assuming that it is

equal to last period, i.e.

φ
¯
t = φt−1 = Ft−1

(
φ+ φ̂t−1

)
Given the signal, and conditional on their information set Īt = {si,

¯
t, φ

¯
t, It−1}, agents update

their expectations from closing time of the previous period, Fi,t−1πt, and form expectations
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Fi,
¯
tπt given their information set via the Kalman filter

Fi,
¯
tπt = K1si,

¯
t + (1−K1)Fi,t−1πt , (88)

Fi,
¯
tπt+h = (α− δ(φ

¯
t − 1))hFi,

¯
tπt ∀h > 0 , (89)

where K1 is the Kalman gain which represent the relative weight placed on new information

relative to previous forecasts. When the signal is perfectly revealing K1 = 1, while in the

presence of noise K1 < 1. Thus (1−K1) is the degree of information rigidity faced by the

agents.

Given their forecasts, at
¯
t, agents trade bonds of different maturities with the following

interest rates

i
(n)

¯
t = an + bnFi,

¯
tπt , (90)

and prices

P
(n)

¯
t = eAn+BnFi,

¯
tπt . (91)

At opening time
¯
t the central bank observes a private noisy signal of the state of the

economy in period t

scb,
¯
t = πt + νcb,

¯
t , νcb,

¯
t ∼ N (0, σcb,ν) . (92)

We can assume without loss of generality that the signal observed by the central bank is more

precise than the one observed by agents: σcb,ν < σn,ν . Given the signal, the central bank

updates its expectations from closing time of the previous period given its information set via

the Kalman filter

Fcb,
¯
tπt = Kcbscb,

¯
t + (1−Kcb)Fcb,t−1πt , (93)

Fcb,
¯
tπt+h = (α− δ(φ+ φ̂t − 1))hFcb,

¯
tπt ∀h > 0 , (94)
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where Kcb is the bank’s Kalman gain. Given its nowcast for inflation, the central bank sets

and announces the interest rate, by following its policy rule:

i
(1)
t = rt = (φ+ φ̂t)Fcb,

¯
tπt + σmpu

mp
t (95)

At closing time t̄, agents observe the new interest rate rt and receive a noisy signal about

the Taylor rule parameter of the central bank, i.e.

φt = φ+ φ̂t + ζt , ζt ∼ N (0, σζ) .

Given these two signals they update their expectations and trade bonds at different maturities.

The policy rate is to the agents a public signal about the state of the economy. In fact,

the policy rate depends on the value of inflation at t as9

rt = (φ+ φ̂t)Fcb,
¯
tπt + σmpu

mp
t

= (φ+ φ̂t)(Kcbscb,
¯
t + (1−Kcb)Fcb,t−1πt) + σmpu

mp
t

= (φ+ φ̂t)(Kcbπt +Kcbνcb,
¯
t + (1−Kcb)Fcb,t−1πt) + σmpu

mp
t

= (φ+ φ̂t)(Kcbπt +Kcbνcb,
¯
t + (1−Kcb)((α− δ(φ− 1))Fcb,

¯
tπt−1 − δσmpumpt−1) + σmpu

mp
t

= (φ+ φ̂t)

(
Kcbπt +Kcbνcb,

¯
t+

(1−Kcb)

((
α− δ

(
φ+ φ̂t−1 − 1

))(rt−1 − σmpumpt−1

φ+ φ̂t−1

)
− δσmpumpt−1

))
+ σmpu

mp
t .

Hence, conditionally, on observing rt and rt−1 (and knowing Kcb), agents extract a public

9We assume that the central bank does not update its nowcast between
¯
t and t̄, i.e. Fcb,

¯
tπt−1 = Fcb,t̄πt−1.
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signal on πt
10

s̃t = πt + νcb,
¯
t −K−1

cb (1−Kcb)((α− δ(φt−1 − 1))φ−1
t−1
− δ))σmpumpt−1 − φ−1

¯
t K−1

cb σmpu
mp
t

= πt + ν̃cb,
¯
t (96)

At t̄, conditional on this public signal, agents update their information set, It̄ = {it, pt, Īt},

and their forecasts

Fi,t̄πt = K2s̃cb,t̄ + (1−K2)Fi,tπt , (97)

Fi,t̄πt+1 = (α + δ)Fi,t̄πt − δrt , (98)

Fi,t̄πt+h = (α− δ(φ−1

¯
t − 1))h−1Fi,t̄πt+1 ∀h > 1 , (99)

where K2 is the Kalman gain, as given by the noise in the public signal ν̃cb,
¯
t.

We can obtain an expression for the revision of expectations, from Eq. (97)

Fi,t̄πt − Fi,
¯
tπt = K2 [s̃cb,t̄ − Fi,tπt]

= K2(πt + ν̃cb,t̄)−K2

[
K1(πt + νi,t) + (1−K1)Fi,t−1πt

]
= K2(1−K1)πt +K2ν̃cb,t̄ −K2K1νi,t −K2(1−K1)Fi,t−1πt

= K2(1−K1)πt +K2ν̃cb,t̄ −K2K1νi,t

−K2(1−K1)((α + δ)Fi,t−1πt−1 − δrt−1)

= K2(1−K1)((α + δ)πt−1 − δrt−1 + σπu
π
t ) +K2ν̃cb,t̄ −K2K1νi,t

−K2(1−K1)((α + δ)Fi,t−1πt−1 − δrt−1)

= K2(1−K1)(α + δ)
[
πt−1 − Fi,t−1πt−1

]
+K2 [(1−K1)σπu

π
t + ν̃cb,t̄ −K1νi,t] .

(100)

10The noise in the signal s̃t is not a white noise. Hence it does not fulfils the standard conditions under
which the Kalman filter is derived. Unmodelled dynamics can degrade the filter performance. We abstract
here from these consideration that would require agents to adopt more sophisticated filtering techniques.
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The expression is obtained by employing in order (i) Eq. (96), (88), and (87); (ii) Eq. (98);

and (iii) the dynamic equation for inflation πt = (α + δ)πt−1 − δrt−1 + σπu
π
t . To find an

expression for the forecast error
(
πt−1 − Fi,t−1πt−1

)
in Eq. (100), first note that Eq. (97)

implies

πt − Fi,t̄πt = K−1
2 (1−K2)

(
Fi,t̄πt − Fi,

¯
tπt
)
− ν̃cb,t. (101)

Then Eq. (101) one period earlier can be written as

πt−1 − Fi,t−1πt−1 = K−1
2 (1−K2)

[
Fi,t−1πt−1 − Fi,t−1πt−1

]
− ν̃cb,t−1

= K−1
2 (1−K2)(α + δ)−1

[
(Fi,t−1πt − Fi,t−1πt)

+ δ (rt−1 − Fi,t−1rt−1)
]
− ν̃cb,t−1 .

(102)

Substituting Eq. (102) into Eq. (100) yields

Fi,t̄πt − Fi,
¯
tπt = (1−K1)(1−K2)

[
(Fi,t−1πt − Fi,t−1πt) + δ(rt−1 − Fi,t−1rt−1)

]
+K2

[
(1−K1)(σπu

π
t − (α + δ)ν̃cb,t−1) + ν̃cb,t̄ −K1νi,t

]
.

(103)

Taking the average over the market, i.e. over the index i, one gets the following proposition.

Lemma 10 (Expectation revisions). A policy announcement triggers a market-wide revi-

sion of expectations, i.e. the information effects, of the form

Ft̄πt − F
¯
tπt = (1−K1)(1−K2)(Ft−1πt − Ft−1πt)

+ (1−K1)(1−K2)δ(rt−1 − Ft−1rt−1)

+K2

[
(1−K1)σπu

π
t − (1−K1)(α + δ)ν̃cb,t−1 + ν̃cb,t̄

]
.

(104)

From the point of view of the agents, it has to be true that

rt = φtFi,t̄πt + σmpFi,t̄ν
mp
t , (105)
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i.e. the agents decompose the rate observed into their updated expectations of inflation and

their guess of the value of the monetary policy shock, given their perceived parameter of the

Taylor rule.

From Eq. (89) and (98), one can derive expression for the term φ(Ft−1πt − Ft−1πt) in Eq.

(104):

φt−1(Ft−1πt − Ft−1πt)

= φt−1(α + δ)Ft−1πt−1 − φt−1δrt−1 − φt−1(α− δφt−1 + δ)Ft−1πt−1

=− (φt−1 − φt−1)(α + δ)Ft−1πt−1 + (α + δ)(rt−1 − Ft−1u
mp
t−1)

− δφt−1rt−1 − (α− δφt−1 + δ)Ft−1rt−1

=(α + δ − φt−1δ)(rt−1 − Ft−1rt−1)+

− (φt−1 − φt−1)(α + δ)Ft−1πt−1 − (δ + α)Ft−1u
mp
t−1

We can substitute this expression in Eq. (103) to obtain

rt − F
¯
trt = (φt − φ

¯
t)Ft̄πt + σmpFi,t̄u

mp
t

+ (1−K1)(1−K2)φ
¯
tφ
−1
t−1(α + δ − φt−1δ)(rt−1 − Ft−1rt−1)

− φ
¯
tφ
−1
t−1(φt−1 − φt−1)(α + δ)Ft−1πt−1 − φ

¯
tφ
−1
t−1(δ + α)Ft−1u

mp
t−1

+ φt(1−K1)(1−K2)δ(rt−1 − Ft−1rt−1)

+ φtK2

[
(1−K1)σπu

π
t − (1−K1)(α + δ)ν̃cb,t−1 + ν̃cb,t̄

]
= (1−K1)(1−K2)

(
δφt + φ

¯
tφ
−1
t−1(α + δ − φt−1δ)

)
(rt−1 − Ft−1rt−1)

+ (φt − φ
¯
t)Ft̄πt − φ

¯
tφ
−1
t−1(φt−1 − φt−1)(α + δ)Ft−1πt−1

+ σmpFi,t̄u
mp
t − φ

¯
tφ
−1
t−1(δ + α)Ft−1u

mp
t−1

+ φtK2

[
(1−K1)σπu

π
t − (1−K1)(α + δ)ν̃cb,t−1 + ν̃cb,t̄

]
This equation shows that monetary policy surprises in a model with imperfect information

are autocorrelated and depends on a convolution of past and current shocks.
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We can rewrite the equation collecting the past monetary policy and observation noise

terms (i.e. terms ν̃cb,t) in υt:

rt − F
¯
trt = (1−K1)(1−K2)

(
φ

¯
tφ
−1
t−1(α + δ)

)
(rt−1 − Ft−1rt−1)

+ (φt − φ
¯
t)Ft̄πt − φ

¯
tφ
−1
t−1(φt−1 − φt−1)(α + δ)Ft−1πt−1

+ φtK2(1−K1)σπu
π
t + σmpFi,t̄u

mp
t + υ̃t

Let us observe that

φ
¯
tφ
−1
t−1 =

φ+ φ̂t−1 + ζt−1

φ+ φ̂t−2 + ζt−2

=
φ+ φ̂t−2 + σφu

φ
t−1 + ζt−1

φ+ φ̂t−2 + ζt−2

≈ 1 +
σφ

φ+ φ̂t−1

uφt−1 +
1

φ+ φ̂t−1

(ζt−1 − ζt−2)

≈ 1 +
σφ
φ
uφt−1 +

1

φ
(ζt−1 − ζt−2), (106)

and that

φt − φ
¯
t = φ̂t − φ̂t−1 + ζt − ζt−1

= σφu
φ
t + ζt − ζt−1, (107)

and putting the two results together, we note that

φ
¯
tφ
−1
t−1(φt−1 − φt−1) ≈

(
1 +

σφ
φ
uφt−1 +

1

φ
(ζt−1 − ζt−2),

)(
σφu

φ
t−1 + ζt−1 − ζt−2

)
≈ σφu

φ
t−1 + ζt−1 − ζt−2 (108)

We can now complete our derivations by using the law of motion of the Taylor rule

parameter, drop all the third order terms (i.e. where a term of the type uφt u
φ
t′ multiplies other

shocks), and absorb all the terms in aggregate observational noise (i.e. in ζt and ν̃cb,t−1) into

υt. Thus we obtain the following lemma.
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Lemma 11 (Policy rate surprise). The average market forecast error on the policy rate is

rt − F
¯
trt = (1−K1)(1−K2) (α + δ) (rt−1 − Ft−1rt−1)︸ ︷︷ ︸

autocorrelation

+ (1−K1)(1−K2) (α + δ)φ−1σφu
φ
t−1(rt−1 − Ft−1rt−1)︸ ︷︷ ︸

rule parameter change

+ σφu
φ
t Ft̄πt − σφu

φ
t−1(α + δ)Ft−1πt−1 + φ̂t−1K2(1−K1)σπu

π
t︸ ︷︷ ︸

rule parameter change

+ φK2(1−K1)σπu
π
t︸ ︷︷ ︸

info effect

+σmpFi,t̄u
mp
t + υt. (109)

where υt is convolution of past and current shocks.

To understand the structure of surprises along the yield curve, we need to consider Eq.

(90), and obtain the following proposition.

Lemma 12 (Monetary policy surprises). The price revisions, i.e., the monetary policy

surprises, for bonds at longer maturities are

∆[t̄−
¯
t]i

(n)
t ≡ i

(n)
t̄ − i

(n)

¯
t = bn(Ft̄πt − F

¯
tπt)︸ ︷︷ ︸

info effect

+
∂bn

∂uφt
(φt − φ

¯
t)(Ft̄πt − F

¯
tπt)︸ ︷︷ ︸

rule parameter change

+ cnFt̄u
mp
t︸ ︷︷ ︸

mp shock

, (110)

where the derivative of bn with respect to uφt , captures the shift in the policy parameter, and

hence its effect on yield at different maturities.

We can now apply the insight provided by Lemmas 6, 7, 8 and 9 on the effects of shocks

to the yield curve to the propagation of policy actions, under imperfect information. Figure

A.3, provide a summary of the effects for different shocks, using the parametrisation proposed

by Smith and Taylor (2009).

Lemma 13 (Policy shocks, shocks to the rule and information). Under imperfect

information:
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Figure A.3: The reaction of the yield curve to shocks (model II)

0 20 40 60 80 100 120

-0.5

0.0

0.5

1.0

n

Shock to rule

MP shock (ζ  0)

MP shock (ζ  0.5)

MP shock with no response of CB (ζ  0.5)

Information shock

Notes: The figure compares the impact on the term structure of interest rates resulting from a shift in the
policy rule (blue), a monetary policy shock (orange when ζ = 0 and green when ζ = 0.5), and an information
shock (light red), for the model with endogenous term premium. The calibration, for quarterly data, follows
Smith and Taylor (2009). n = 120 corresponds to 120 quarters (i.e., 30 years). Finally, in grey, the chart
reports the term structure’s reaction under the assumption that the central bank does not respond to the
macroeconomic consequences of its own monetary policy shock, which follows an AR(1) process with an
autocorrelation coefficient of 0.5.

(a) A shock to the policy parameter, when understood by agents, causes interest rates on

bonds with sufficiently long maturities to move in the opposite direction of both the

parameter change and the short-term rate forecast error.

(b) An information shock raises the entire yield curve, with its effects diminishing over

longer horizons.

(c) If inflation persistence significantly exceeds the autocorrelation of monetary policy shocks,

a monetary policy shock raises short-term yields, exerts small negative effects on medium-

term maturities, and has negligible effects on long-term maturities.
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A.4 Policy rule with inflation and output

Consider an extension of the model discussed in the previous section, where the central bank

responds to real output alongside inflation:

rt = φππt + φyyt + σmpν
mp
t = φxt + σmpν

mp
t (85)

mt+1 = exp

(
−rt −

1

2
λ′tλt

)
(111)

λt = γ + Ψxt (112)

yt = βyt−1 − δ(rt−1 − πt−1) + σyu
y
t (88)

πt = απt−1 + ιyt + σπu
π
t (113)

where we define

xt ≡

yt
πt

 , ut ≡

uyt
uπt

 , φ ≡

φy
φπ

 , γ ≡

γ01

γ02

 ,

and

Ψ ≡

−ψ11 ψ12

ψ21 −ψ22

 . (114)

The shocks uyt , u
π
t , u

mp
t are i.i.d as N (0, 1) and uncorrelated.

Equation (85) represents the policy rule, incorporating real output in the central bank’s

interest rate setting. Eq. (111) defines the pricing kernel, now extended to a matrix form. Eq.

(112) describes risk terms related to inflation and real output, and Eq.s (88) and (113) model

the dynamics of output and inflation.

The yield of an n-period bond remains an affine function of inflation and output, expressed

as:

b(n)
n = an + b′nxt (115)
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where an is the intercept and bn is the n-period response coefficient vector:

bn =

b1,n

b2,n

 . (116)

Rewriting Eq. (88) and (113) as a VAR:

xt = Φxt−1 + Σut (117)

where

Ω =

 β − δφy −δ(φπ − 1)

ι(β − δφy) α− ιδ(φπ − 1)

 , Σ =

 σy 0

ισy σπ

 . (118)

As discussed in Smith and Taylor (2009), the response coefficient for bond yields is:

bn =
1

n

(
n−1∑
i=0

(Ω− ΣΨ)i

)′
φ, (119)

which extends the previous formula in Eq. (66), and can be rewritten as

bn =
1

n

[
(I − (Ω− ΣΨ)n) (I − (Ω− ΣΨ))−1

]′
φ. (120)

and

bn ∼
1

n

[
(I − (Ω− ΣΨ))−1

]′
φ

=
1

n

1

D

ι(δ(φπ − 1) + ψ12σy)− ψ22σπ ι(β − δφy + ψ11σy)− ψ21σπ

δ(1− φπ)− ψ12σy 1− β + δφy − ψ11σy

φ, (121)

where

D = (β − δφy)ψ22σπ + δι(φπ − 1) + ιψ12σy + ψ11ψ22σπσy − ψ12ψ21σπσy − ψ22σπ.
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Define K ≡ Φ− ΣΨ, for which

κ22 = α− ιδ(φπ − 1)− ισyψ12 + σπψ22 = α + ικ12 + σπψ22, (122)

κ12 = −δ(φπ − 1)− σyψ12, (123)

κ11 = β − δφy + σyψ11, (124)

κ21 = ι(β − δφy) + ισyψ11 − σπψ21 = ικ11 − σπψ21. (125)

The derivatives of bn with respect to φy and φπ are:

∂bn
∂φy

=
1

n

1− δ
∑n−1

i=1

(
iφyκ

i−1
11 + ιφπκ

i−1
21

)
+
∑n−1

i=1 κ
i
22∑n−1

i=1 κ
i
12

 (126)

∂bn
∂φπ

=
1

n

 ∑n−1
i=1 κ

i
12

1− δ
∑n−1

i=1

(
iφyκ

i−1
12 + ιφπκ

i−1
22

)
+
∑n−1

i=1 κ
i
22

 . (127)

This expression, is the equivalent of Eq. (79) in the model with the central bank responding

only to inflation, and reflects counteracting effects. Two summations arise: one geometric,

representing direct policy influence, and the other arithmetic-geometric, capturing inflation

persistence and the output gap. Using this formulation, the policy response’s effect on

long-term yields can be assessed.

Let us start from the Eq. (127):

∂b2,n

∂φπ
=

1

n

(
1 +

n−1∑
i=1

κi−1
22

)
− 1

n

(
δ
n−1∑
i=1

i(φyκ
i−1
12 + ιφπκ

i−1
22 )

)
. (128)

By computing the usual formulas for geometric and arithmetic series ones gets:

∂b2,n

∂φπ
=

1

n

(
1 +

1− κn−1
22

1− κ22

− δ
(
φy

1− nκn−1
12 + (n− 1)κn12

(1− κ12)2
+ ιφπ

1− nκn−1
22 + (n− 1)κn22

(1− κ22)2

))
.

(129)

39



For n large we get:

∂b2,n

∂φπ
∼ 1

n

(
1 +

1

1− κ22

− δ
(
φy

1

(1− κ12)2
+ ιφπ

1

(1− κ22)2

))
.

Now consider the second entry in Eq. (127)

∂b1,n

∂φπ
=

n−1∑
i=1

κi21 = κ21
1− κn−1

21

1− κ21

. (130)

Thus, for large n we get:

∂b1,n

∂φπ
=

1

n
κ21

1

1− κ21

. (131)

Hence, the total effect on the yield curve of a change in φπ is:

∂bn
∂φπ

=
∂b1,n

∂φπ
yt +

∂b2,n

∂φπ
πt

=
1

n

(
κ21

1− κn−1
21

1− κ21

)
yt +

1

n

(
1 +

1− κn−1
22

1− κ22

−δ
(
φy

1− nκn−1
12 + (n− 1)κn12

(1− κ12)2
+ ιφπ

1− nκn−1
22 + (n− 1)κn22

(1− κ22)2

))
πt,

(132)

and for large n is

∂bn
∂φπ

∼ ∂b1,n

∂φπ
yt +

∂b2,n

∂φπ
πt (133)

=
1

n

(
κ21

1− κ21

)
yt +

1

n

(
1 +

1

1− κ22

− δ
(
φy

1

(1− κ12)2
+ ιφπ

1

(1− κ22)2

))
πt. (134)

Consider now Eq. (126):

∂b1,n

∂φy
=

1

n

(
1 +

n−1∑
i=1

κi−1
22

)
− 1

n

(
δ
n−1∑
i=1

i(φyκ
i−1
11 + ιφπκ

i−1
21 )

)
, (135)

and

∂b2,n

∂φy
=

n−1∑
i=1

κi12 = κ12
1− κn−1

12

1− κ12

. (136)
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Thus, following the same steps:

∂bn
∂φy

=
∂b1,n

∂φy
yt +

∂b2,n

∂φy
πt (137)

=
1

n

(
κ12

1− κn−1
12

1− κ12

)
yt +

1

n

(
1 +

1− κn−1
22

1− κ22

− δ
(
φy

1− nκn−1
11 + (n− 1)κn11

(1− κ11)2
+ ιφπ

1− nκn−1
21 + (n− 1)κn21

(1− κ21)2

))
πt,

(138)

And for large n we get:

∂bn
∂φy
∼ ∂b1,n

∂φy
yt +

∂b2,n

∂φy
πt (139)

=
1

n

(
κ12

1− κ12

)
yt +

1

n

(
1 +

1

1− κ22

− δ
(
φy

1

(1− κ11)2
+ ιφπ

1

(1− κ21)2

))
πt (140)

Hence, for a shock of σφu
φ
t , as in Eq.s (20-21) the total effect would be given by:

∂i
(n)
t

∂φ
=
∂b1,n

∂φy
ισφ +

∂b2,n

∂φy
σφ +

∂b1,n

∂φπ
ισφ +

∂b2,n

∂φπ
σφ (141)

A.4.1 The magnitude of the effects at the long end of the curve

To assess the magnitude of the effects of a shock to the rule parameters, we use the parameter

calibration of Smith and Taylor (2009). For large n, the dominant term in Eq. (141) determines

the effects at longer maturities:11

∆[t̄−
¯
t]i

(n)
t ∼

1

n

{
1

1− κ22

}
(ι+ 1)σφ −

1

n

{
ιδφπ

(1− κ22)2

}
(ι+ 1)σφ.

It is important to observe that κ22 = 0.946, based on the parameter estimates of Smith and

Taylor (2009). Since κ22 is close to one, for a reasonable range of values of the monetary policy

autocorrelation coefficient, the shock to the rule induces a large effect on longer maturities,

11The calibration in Taylor and Smith is ι = 0.2, σy = 0.75, δ = 0.2, σπ = 0.36, ψ11 = 0.1, ψ12 = ψ21 = 0,
ψ22 = 0.15, β = 0.2. Assuming α = 0.95, φπ = 1.2, and φy = 1.2 we obtain: κ12 = −0.04, κ11 = 0.035,
κ21 = 0.007, κ22 = 0.946.
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Figure A.4: The reaction of the yield curve to shocks (model II with output)
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Notes: The figure compares the impact on the term structure of interest rates resulting from a shift in the
policy rule in the model without output in the full model of section A.3 (blue), with a shock to rule of the
same model where we also model output, in violet. The calibration, for quarterly data, follows Smith and
Taylor (2009), however we assume α = 0.95 instead of α = 1 (larger persistent of inflation) so that |k22| < 1.
n = 120 corresponds to a maturity of 30 years.

whereas the monetary policy shock has negligible effects. Figure A.4 plots the response of the

yield curve to a shock to the rule in the model without output (in blue) versus the model with

output (in violet). Notice that in both models, using the parameter estimates from Smith

and Taylor (2009), the response at longer maturities becomes negative and large.
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B Data sources

Table B.4: Data

Figure Data Source

Figure (1)

• DGS2: Market Yield on U.S. Treasury Securities at 2-Year Constant
Maturity, Monthly, Not Seasonally Adjusted, Percent

• PCEPILFE: Personal Consumption Expenditures Excluding Food
and Energy, Chain-Type Price Index, Index 2012=100, Monthly,
Seasonally Adjusted

• OUTGAP: Difference between GDP (GDPC1) and potential GDP
(GDPPOT), expressed as a percentage of potential GDP, Monthly,
Linearly Interpolated

• GDPC1: Real Gross Domestic Product, Billions of Chained 2012
Dollars, Seasonally Adjusted Annual Rate

• GDPPOT: Real Potential Gross Domestic Product, Billions of
Chained 2012 Dollars, Quarterly, Not Seasonally Adjusted

FRED

Figures (2) to (6)

• BCFFs for Federal Funds Rate, Percent per annum, average for
quarter, 1993-2021

• BCFFs for Real GDP, Q/Q change, SAAR, 1993-2021

• BCFFs for GDP price index, Q/Q change, SAAR, 1993-2021

Blue Chip Financial Forecasts

• ‘First release’ realisations for Real GNP/GDP (ROUTPUT), Q/Q
Growth (Annual Rate, Percentage Points)

• ‘First release’ realisations for Price Index for GNP/GDP (P), Q/Q
Growth (Annual Rate, Percentage Points)

• Effective Federal Funds rate

BEA & FRED

Figure (10)

• Dataset high-frequency price revisions

Gurkaynak et al. (2005)

Tables 3-4

• Greenbook projections for Q/Q growth in real GDP, chain weight
(annualized percentage points)

• Greenbook projections for Q/Q growth in price index for GDP, chain
weight (annualized percentage points)

• Greenbook projections for the unemployment rate (percentage
points)

• Note: data used also in Figures (2) to (6)

Tealbook (formerly
Greenbook) Data Sets

Figures (12)-(14)

• INDPRO: IP Index

• UNRATE: CivilianUnemploymentRate

• FEDFUNDS: Effective Federal Funds Rate

• GS1-GS5-GS10 Treasury Yields

• CPIAUCSL: CPI :All Items

• S&P500: S&P’s Common Stock Price Index: Composite

• Excess Bond Premium

FRED-MD &
Gilchrist and Zakraǰsek (2012)

Notes: Datasets adopted in the paper.
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C Additional charts and figures

C.1 Remarks – additional charts

Figure C.5: Rolling RMSFE (Blue Chip same month Greenbook)
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(a) GDP deflator RMSFE (current quarter)
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(b) GDP deflator RMSFE (next quarter)
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(c) Real GDP RMSFE (current quarter)
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(d) Real GDP RMSFE (next quarter)
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Notes: This figure shows rolling RMSFEs for quarter over quarter real GDP growth and quarter over quarter

price deflator growth, for both the current quarter (h = 0) and the next quarter (h = 1). For each year, the

RMSFEs are computed as 5-year centred moving averages of year over year averages of RMSFEs for each

forecasters. The solid lines represent the rolling RMSFEs for the Greenbook (green), the mean forecaster

(blue), and the median forecaster (light blue). The dashed black line corresponds to the average RMSFE

across all individual forecasters. Greenbook forecasts are aligned with the closest preceding Blue Chip forecast

date for each FOMC meeting. Only forecasters who have been consistently active for at least 15 years and

provided current quarter forecasts in at least 6 months of each year are included in the computation of average

RMSFEs. Results with a larger set of forecasters confirm better performance of the Greenbook with respect

to the average RMSFEs across forecasters and similar performance with the other forecasters. Sample goes

from 1993 to 2019 (end of availability of the Greenbook).
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Figure C.6: Dispersion of one-quarter-ahead market forecasts for federal
funds rate
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Notes: The figure illustrates the dispersion of market forecasts for the next quarter of the average FFR

alongside the actual average realised rate. The purple area represents the range between the 5th and 95th

percentile of the forecasts done in the first month of each quarter. The green area represents the same range

for the second month of each quarter, and the yellow area represents the same range for the last month of

each quarter. The blue line corresponds to the realised quarterly average of the FFR.
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Figure C.7: Dispersion of fixed-horizon market forecasts for federal funds
rate (current quarter)
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Notes: The figure illustrates the dispersion of fixed-horizon market forecasts for the current quarter of the

average FFR, alongside the actual average realised rate. The purple area represents the range between the

5th and 95th percentile of the forecasts issued in the first month of each quarter. The green area represents

the same range for the second month, and the yellow area for the third. The blue line corresponds to the

realised quarterly average of the FFR.
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Figure C.8: Dispersion of fixed-horizon market forecasts for federal funds
rate (next quarter)
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Notes: The figure illustrates the dispersion of fixed-horizon market forecasts for the next quarter of the

average FFR, alongside the actual average realised rate. The purple area represents the range between the

5th and 95th percentile of the forecasts issued in the first month of each quarter. The green area represents

the same range for the second month, and the yellow area for the third. The blue line corresponds to the

realised quarterly average of the FFR.
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C.2 Comparison Greenbook and Consensus Economics

This section explains the procedure used to construct forecast evaluation figures for fixed-

horizon predictions of inflation and real GDP growth for Greenbook projections and Consensus

Economics. The forecasts come from two sources: private-sector projections compiled by the

Consensus Economics, and internal Federal Reserve projections released in what was formerly

known as the Greenbook, now referred to as the Tealbook. The aim is to compare these

forecasts to realised inflation and real GDP growth over a consistent 12-month horizon.

Consensus forecasts are collected monthly and report the expected percentage change in

both CPI and real GDP for the current calendar year and the next calendar year. Thus,

these forecasts are provided as fixed-event forecasts fo the current year and next calendar

year, but for evaluation purposes, we convert them to a fixed 12-month horizon beginning

from the month of the survey. To achieve this, a weighted average of the current and next

year’s forecasts is computed. The weights are determined by the number of months remaining

in the year of the forecast. For instance, if the survey is conducted in April, then 9 months

remain in the current year, resulting in weights of 9/12 for the current year’s forecast and

3/12 for the next year’s. This method produces a continuous rolling estimate of the expected

12-month change in CPI and GDP, aligning all consensus forecasts to the same horizon for

comparability.

The Greenbook projections differ in both structure and format. These forecasts are

reported quarterly and expressed as annualised quarter-on-quarter growth rates. In order

to construct a 12-month forecast comparable to that derived from the Consensus data, a

compound transformation is applied. Specifically, the forecasted growth rates for the next

four quarters are first converted from annualised percentages to decimal quarterly rates. Then,

a compounded growth factor over the four quarters is calculated by multiplying the one-plus-

growth terms together and subtracting one. The result reflects the expected year-on-year

change from the time of the forecast, and the same transformation is applied to both real

GDP and CPI projections from the Greenbook.
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After transforming all forecasts into a common 12-month format, they are matched to

observed realisations. For inflation, the realised value is based on the Consumer Price Index for

All Urban Consumers (CPI-All Items), which is publicly available from the FRED under the

series ‘CPIAUCSL’. To align realisations with the forecast horizon, the actual CPI 12-month

growth rate is computed by taking the percentage change in the CPI index from the survey

month to the same month one year later. The resulting figure is a year-ahead realisation that

directly matches the intended forecast horizon.

The realised values for real GDP growth are constructed directly from first-release quarterly

data available in the Philadelphia Fed’s Real-Time Data. This dataset reports annualised

quarter-on-quarter growth rates, which must be transformed into year-on-year changes to

match the forecast horizon. To do this, each quarterly growth rate is first converted to a

decimal rate by dividing by 100 and then by 4 (since it is reported as an annualised quarterly

rate). Then, a forward-shifted rolling product of four consecutive quarters is taken to simulate

the compounded effect over the upcoming year. The formula mirrors the transformation

used for the Greenbook forecasts. The result is a series of forward-looking, realised 12-month

growth rates that are aligned with each survey date.

Forecast performance is assessed using the RMSFE, which is calculated by taking the

square root of the mean of squared forecast errors. RMSFEs are computed separately for

each individual forecaster, as well as for the mean and median of the forecasts reported by

the Consensus Economics panel, and for the Greenbook forecast.

Two additional benchmarks are constructed for comparison. The first is the mean of

individual RMSFEs across all forecasters who meet a consistency threshold, defined as having

submitted forecasts in at least six months of a year, and in at least ten different years. This

average reflects typical individual performance within the forecasting panel. The second

benchmark is the pooled RMSFE, which is computed by collecting all raw individual monthly

forecast errors, squaring them, averaging, and taking the square root. This measure treats the

entire panel’s forecast distribution as a single group and reflects the total collective forecasting
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accuracy.

To ensure consistency in the evaluation of forecast performance, all forecasts and realisations

are aligned using the Greenbook projection dates as reference points. We match the most

recent previous available forecast for each private forecaster with respect to each Greenbook

date. Finally, for each Greenbook release, the corresponding realised value, be it inflation

or real GDP growth, is matched to the 12-month change beginning from the date of that

projection.

These metrics are summarised in bar plots, as shown in Figures (C.9a) and (C.9b), which

display full-sample (1990 to 2019) RMSFEs for inflation and real GDP growth, respectively.

The bars indicate RMSFEs for each consistent individual forecaster. Vertical lines denote

the pooled RMSFE (black dashed line), the mean forecast (blue), the median forecast (light

blue), and the Greenbook (solid green line).

To evaluate how forecast accuracy changes over time, a rolling RMSFE analysis is conducted.

This process begins by computing one-year-ahead RMSFEs at the annual level. For each

calendar year, all forecast errors from that year’s surveys are gathered for each forecast

type—Greenbook, mean, median, and each individual forecaster.

After obtaining these annual RMSFEs, a centred five-year rolling average is applied. For

each rolling year t, the RMSFE is averaged over the five-year window from t − 2 to t + 2.

This is done identically for the Greenbook, mean, and median forecast series.

The pooled RMSFE in the rolling framework follows the same logic. For each year, all

monthly forecast errors across all consistent individual forecasters are gathered. These are

squared, averaged, and square-rooted to yield an annual pooled RMSFE. The resulting pooled

series is then smoothed using the same five-year rolling window.

These rolling RMSFE series are visualised in Figures (C.10a) and (C.10b). Each line in

the figure corresponds to Greenbook (green line), mean forecast (blue line), median forecast

(light blue line), and the pooled RMSFEs (black line). All series are constructed by first

computing annual RMSFEs for 1-year-ahead forecast errors, then applying a five-year centred
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moving average.

Figure C.9: RMSFE comparisons – Consensus Economics and Greenbook
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(a) Inflation RMSFEs (1990 to 2019)
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(b) Real GDP RMSFEs (1990 to 2019)

Notes: Bars represent full-sample (1990 to 2019) RMSFEs for each forecaster in one year ahead forecasts error

for growth in real GDP and inflation. Vertical lines mark RMSFEs for Greenbook (green), mean forecast

(blue), median forecast (light blue), and pooled RMSFEs (black dashed). For any additional details, please

refer to the text.

Figure C.10: Rolling RMSFEs – Consensus Economics and Greenbook
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(b) Rolling Real GDP RMSFEs

Notes: Each series is computed from annual RMSFEs of one-year-ahead forecast errors and the values shown

are centred five-year averages of each series. The green line represents Greenbook, the blue line is the mean

forecaster, the light blue line is the median forecaster, and the black line represents the pooled RMSFEs. For

any additional details, please refer to the text.
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C.3 Comparison Greenbook and BCFF

This section describes the methodology used to evaluate and compare the forecast accuracy

of the Greenbook projections and private-sector forecasts from the BCFF. The analysis

focuses on quarter-on-quarter annualised percentage changes in real GDP and the GDP

deflator, evaluated at two fixed horizons: the current quarter (h = 0) and the next quarter

(h = 1). Realised outcomes are based on first-release data obtained from the Philadelphia

Fed’s real-time data archive and correspond to the same quarterly periods targeted by the

forecasts.

The forecast evaluation relies on a balanced panel of professional forecasters from the

BCFF survey, which has been published monthly since 1980.12 To ensure comparability over

time and avoid distortions due to irregular participation, we restrict attention to a set of

consistent forecasters defined as those who report forecasts for at least 15 years and submit

projections in at least six months of each year at the h = 0 horizon. These criteria filter out

occasional contributors and ensure that our performance metrics reflect sustained forecasting

behaviour.

Greenbook forecasts are released five years after each FOMC meeting they refer to but

are made shortly before those meetings and provide projections for different macroeconomic

variables. For the purposes of this analysis, we focus exclusively on real GDP growth and

GDP deflator, reported as annualised quarter-on-quarter rates. Two forecast horizons are

evaluated: the current quarter and the following quarter. The corresponding realisations are

taken to be the first official releases of real GDP and GDP deflator from the Philadelphia

Fed’s real-time data archive for the target quarter implied by each Greenbook forecast date.13

To allow for a meaningful comparison between Greenbook and BCFF projections, forecast

dates must be aligned. Because the Greenbook is tied to the FOMC calendar and the BCFF is

12We start the analysis from 1993 as the label for forecasters become available from that date and helps us
following individual forecasters over time.

13There are different releases of QoQ growth in real GDP and GDP deflator. We focus on the first release
as it is the closest in time to when the forecasts are made. Results are similar when using the second and
third releases, as also shown in Hoesch et al. (2023).
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released on a monthly schedule, we implement two matching procedures. Under the ‘previous

date’ alignment, we assign to each Greenbook release the most recent BCFF forecast that

precedes it in calendar time. In contrast, following Bauer and Swanson (2023a), we consider

also the ‘closest date’ approach that selects the Blue Chip forecast with the smallest number

of days separating it from the Greenbook date, whether before or after. The BCFF are

realeased on the first day of the month, and we take that date as the BCFF reference date.

Also, to avoid cases where forecasts refer to different quarters (e.g., Greenbook in March

matched with BCFF in April), we exclude all observations for which the Greenbook date

falls in March, June, September, or December. These months correspond to ends of quarters,

when a subsequent Blue Chip forecast might refer to a different reference period.

Forecast accuracy is assessed using the RMSFE. For each forecast type (Greenbook, mean

forecaster, median forecaster, and individual forecasters) RMSFEs are calculated over the full

sample from 1993 to 2019. The results are presented in static bar plots that show individual

RMSFEs for each consistent forecaster, alongside vertical lines indicating the benchmark

performances of the Greenbook, the mean forecaster, and the median forecaster. These static

comparisons are shown separately for the ‘closest date’ and ‘previous date’ alignments in

Figures (2) and (3), respectively.

To explore the evolution of forecast accuracy over time, we construct rolling RMSFEs.

First, monthly forecast errors are aggregated at the annual level to produce year-specific

RMSFEs for each forecaster. A centred five-year moving average is then applied to each

series: for year t, the average is taken over the window [t− 2, t+ 2]. This rolling procedure is

applied separately to the Greenbook, the mean and median forecasters, and to the annual

average across RMSFEs of individual forecasters. The resulting smoothed RMSFE series are

plotted over time in Figure (4), allowing for a dynamic comparison of forecast performance.

All computations are based exclusively on forecasts and realisations expressed as annualised

quarter-on-quarter growth rates, ensuring comparability across forecasts and realisations.
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C.4 Additional charts and tables for information effects

Figure C.11: Alessi et al. (2010) test for the number of factors
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Notes: The figure reports the test proposed by Alessi et al. (2010). It plots r∗Tc,N as a function of the parameter

c, which represents the penalisation term for the information criterion used to determine the number of factors.

The second stability interval, where Sc equals zero, corresponds to r∗Tc,N = 4, indicating the presence of four

statistically significant factors.
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Table C.11: Information effects on market surprises I (OLS post LASSO)

FF1 FF2 FF3 FF4 FF5 FF6 ED1 ED2 ED3 ED4

RGDPh=0 0.008* 0.005 0.004 0.007* 0.008* 0.011*** 0.006 0.010*** 0.009* 0.008*
(0.003) (0.004) (0.003) (0.004) (0.003) (0.003) (0.004) (0.004) (0.005) (0.005)

RGDPh=3 -0.005
(0.004)

PGDPh=1 -0.006 -0.009*
(0.004) (0.006)

UNEMPh=0 0.003
(0.002)

∆UNEMPh=2 0.027***
(0.017)

RGDPh=1 0.003 0.006 0.002 0.007 0.002 0.006 0.005
(0.005) (0.005) (0.005) (0.006) (0.006) (0.007) (0.007)

PGDPh=3 -0.010***
(0.008)

∆RGDPh=−1 -0.006**
(0.003)

∆RGDPh=1 0.008* 0.012*** 0.010*** 0.010***
(0.007) (0.008) (0.009) (0.009)

∆PGDPh=0 0.010***
(0.008)

∆RGDPh=0 0.006 0.007*
(0.006) (0.006)

Constant -0.017*** -0.011*** -0.032*** -0.010*** -0.030*** -0.037*** -0.041*** -0.040*** -0.045*** -0.042***
(0.014) (0.017) (0.011) (0.018) (0.009) (0.009) (0.014) (0.013) (0.014) (0.014)

R2 0.078 0.058 0.060 0.087 0.051 0.070 0.089 0.136 0.148 0.130
F 2.699 2.940 4.278 3.305 8.220 13.575 4.624 4.713 5.669 4.850

P -value 0.022 0.034 0.015 0.007 0.005 0.000 0.011 0.001 0.000 0.001
N 243 243 243 243 243 243 243 243 243 243

Notes: This table presents the results of the information effect regressions for short-term interest rates
(FF1-FF6) and Eurodollar futures (ED1-ED4). The dependent variables are the monetary surprises, while the
explanatory variables include Greenbook forecasts. The regressors have been selected by LASSO and the
table presents OLS regressions post LASSO. Sample goes from 1991m7 to 2019m6.
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Table C.11: Information effects on market surprises II (OLS post LASSO)

TRE3M TRE6M TRE2 TRE5 TRE10 TRE30 SP500

RGDPh=0 0.005** 0.006*** 0.008** 0.009*** 0.005 0.004
(0.002) (0.002) (0.003) (0.003) (0.004) (0.003)

PGDPh=1 -0.004
(0.005)

UNEMPh=0 0.002*
(0.001)

∆UNEMPh=2 0.033*
(0.017)

RGDPh=1 0.002
(0.005)

∆RGDPh=1 0.010 0.007
(0.007) (0.008)

∆RGDPh=2 0.018* 0.029** 0.026***
(0.011) (0.013) (0.009)

RGDPh=−1 0.003 0.001
(0.002) (0.002)

RGDPh=3 0.004 0.004
(0.004) (0.003)

PGDPh=−1 0.008** 0.005
(0.004) (0.003)

∆RGDPh=0 0.007
(0.005)

Constant -0.025 -0.022*** -0.028** -0.022*** -0.046** -0.031* 0.014
(0.017) (0.006) (0.011) (0.008) (0.020) (0.016) (0.037)

R2 0.051 0.041 0.099 0.127 0.251 0.194 0.000
F 2.596 8.017 7.348 6.177 2.233 2.278 0.000

P -value 0.037 0.005 0.000 0.000 0.021 0.029 .
N 243 243 243 243 243 243 243

Notes: This table presents the results of the information effect regressions for treasury yields (TRE3M-
TRE30Y) and Stock Market (SP500). The dependent variables are the monetary surprises, while the
explanatory variables include Greenbook forecasts selected by LASSO. The table presents OLS regression
post LASSO. Sample goes from 1991m7 to 2019m6 (availability of Greenbook).
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Table C.11: Information effects on raw identified monetary policy factors

Conventional MP (F1) Shock to Rule (F2) QE/QT (F3) Forward Guidance (F4)

RGDPh=0 0.073 0.026
(0.073) (0.068)

RGDPh=1 0.054
(0.079)

∆RGDPh=1 -0.083*
(0.043)

∆ RGDPh=2 -0.146*** 0.304 -0.019
(0.051) (0.219) (0.017)

RGDPh=−1 0.068*
(0.035)

RGDPh=3 0.066
(0.075)

PGDPh=−1 0.118*
(0.067)

∆ gRGDPh=0 0.123 0.016
(0.084) (0.011)

gPGDPh=0 0.008
(0.008)

gPGDPh=3 0.028
(0.025)

UNEMPh=2 0.005
(0.005)

∆RGDPh=−1 0.010
(0.009)

∆PGDPh=−1 -0.012
(0.014)

∆PGDPh=1 -0.022
(0.017)

∆ UNEMPh=−1 -0.173
(0.115)

∆UNEMPh=2 0.102
(0.072)

Constant -0.295* -0.014 -0.605* -0.102
(0.161) (0.020) (0.342) (0.063)

R2 0.041 0.091 0.113 0.052
F -statistic 2.813 10.793 1.378 1.356
P -value 0.062 0.000 0.224 0.202
N 243 243 243 243

Notes: This table presents the information effect regressions for the raw monetary policy factors. The
dependent variables are monetary policy factors (F1-F4), while the regressors include Greenbook forecasts.
Sample spans from 1991m7 to 2019m6.
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C.5 Robustness – IRFs different samples

Figure C.12: Conventional monetary policy – different samples
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Notes: The figure reports the impulse response functions (IRFs) to a conventional monetary policy shock

estimated over different starting periods of the sample. We also report, in orange, the results if we run the

BVAR up to the financial crisis. The shock is identified with the conventional mp informationally robust

factor, and normalised to induce a 100 basis point increase in the 1-Year Treasury rate. The grey shaded

areas represent 90 percent coverage bands from the baseline specification.
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Figure C.13: Shock to the rule’s parameters – different samples (information
correction)

0 6 12 18 24

-10

-5

0

5

10
IP

0 6 12 18 24

-6

-4

-2

0

2

CPI

0 6 12 18 24

-1

0

1

2

3

FEDFUNDS

0 6 12 18 24

0

2

4

EBP

0 6 12 18 24

-2

0

2

Treasury Yield 1Y

0 6 12 18 24
-8

-6

-4

-2

0

2

Treasury Yield 5Y

0 6 12 18 24
-8

-6

-4

-2

0

2

Treasury Yield 10Y

0 6 12 18 24

-1

0

1

2
UnemploymentRate

0 6 12 18 24

-60
-40
-20

0
20

S&P500

90% bands (baseline) 1980m1-2019m12 1979m1-2019m12 1979m7-2019m12 1980m1-2009m12

Notes: This figure presents the IRFs for a shock to the rule’s parameters, over different starting periods of

the sample. We also report, in orange, the results if we run the BVAR up to the financial crisis. The shock is

normalised to induce a 100 basis point increase in the 1-Year Treasury rate. Grey shaded areas indicate 90

percent coverage bands from the baseline specification.
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C.6 Comparison of different information corrections

Figure C.14: Comparison of information corrections conventional mp shock
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Notes: The figure compares the IRFs for a conventional monetary policy shock using two different methods

for information correction. The dark blue line corresponds to the correction applied to market surprises, while

the light blue line represents the correction applied directly to the extracted factors.
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Figure C.15: Comparison of information corrections shock to the rule’s pa-
rameters
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Notes: The figure compares the IRFs for a shock to the rule’s parameters using two different information

correction methods. The dark blue line represents the correction applied to market surprises, while the light

blue line represents the correction applied to the extracted factors.
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